Ergänzende Materialien zu:

"Vegetations- und Bodenverhältnisse der Wälder im Nationalpark Gesäuse (Österreich: Steiermark)"

von Anton CARLI

erschienen in: Mitteilungen des naturwissenschaftlichen Vereines für Steiermark. Bd. 138: 159–254.

Inhalt:

- 1. Errata
- 2. Ergänzende Fotos
- 3. Ergänzungen zur Methodik hinsichlich Vegetationsdaten
- 4. Tabelle der Bodenprofile
- 5. Übersicht der geologischen Ausgangssubstrate
- 6. Bestimmungsschlüssel der Standortstypen
- 7. Karten

1. Errata

- S. 207, Absatz 1, 3. Satz: "Die Gesellschaft ist bei EICHBERGER & al. 2007 für Tirol angegeben, …" ist zu ersetzen durch "Die Subassoziation ist bei EICHBERGER & al. 2007 für Tirol angegeben, …".
- S. 212, Absatz 2, 2. Satz: "Ahorn-Eschenwaldstandort mit Kalkrotlehm (C64)" ist zu ersetzen durch "Standortstyp Ahorn-Eschen-reicher Lehm-Buchenwald (C64)".
- S. 213, Absatz 1, 2. Satz: "Der Ahorn-Eschenwaldstandort" ist zu ersetzen durch "Der Standortstyp Ahorn-Eschenreicher Lehm-Buchenwald".
- S. 241, Absatz 3, 2. Satz: "Adenostylo glabrae luzuletosum sylvaticae" ist zu ersetzen durch "Adenostylo glabrae-Piceetum luzuletosum sylvaticae".

2. Ergänzende Fotos

Foto 1: Silberweidenauwald mit Lavendelweide in der Lettmairau bei siebenjährlichem Hochwasser am 12. Juli 2005.

Foto 2: Latschen-Lärchen-Vorwaldstadium über Schuttstrom in ca. 1430 m Seehöhe, Nordabhang der Planspitze.

Foto 3: Die Buchenbestände des Hinterwinkl in Herbstverfärbung (rechts vorne Fichtenforste). Auf der nordexponierten Talseite (am Foto links) ist die Standortseinheit "Hangschuttfächer der höheren Lagen mittelmontane Buchen-Variante" ausgebildet (z.B. Aufnahme C14). Über den ebenfalls jungen Hangschuttfächern der südexponierten Talflanke (am Foto rechts) stocken frühe Stadien des Carbonatschutt-Fi-Ta-Buchenwaldes (z.B. Aufnahme C13). Beide Buchenwaldausformungen stehen in direktem Kontakt mit Latschenfeldern.

Foto 4: Aufnahmefläche C38 (780 m Seehöhe) mit Bewimpertem Almrausch und Latsche als auffälligen Kennarten der Standortseinheit "Schattseitige montane Nadelholzstandorte typische Variante".

Foto 5: Standortstyp "Schneeheide-Kiefernwald über anstehendem Fels". Oben links im Bild der Aufnahmebereich von C37.

Foto 6: Naturnaher Carbonatschutt-Fi-Ta-Buchenwald vom Südabhang des Tamischbachturm (860 m Seehöhe).

Foto 7: Naturnaher Carbonatschutt-Fi-Ta-Buchenwald vom Südabhang des Buchstein (1320 m Seehöhe).

Foto 8: Urwald Rothwald: Typischer Bestandesaufbau im Fichten-Tannen-Buchen-Urwald. Fichten und Tannen überragen das Kronendach der hinsichtlich Stammzahlen dominierenden Buche.

Foto 9: Wolken drängen von Norden entlang der Linie Kleiner Buchstein-Tieflingmauer-Tamischbachturm ins Nationalparkgebiet. Zu beobachtende besonders hohe Konkurrenzkraft der Buche in diesem Nationalparkbereich (z.B. Aufnahmen C14, C30) ist auf vergleichsweise ozeanischere Verhältnisse infolge der vorherrschenden Nordwestwetterlagen zurückzuführen.

Foto 10: Aufnahmefläche C18: Muldenstandort mit mächtiger pseudovergleyter Lehmlage am Gstattersteinplateau mit drehwüchsiger, breitkroniger Buche.

Foto 11: Aufnahmefläche C71: Naturnaher Aspekt des Ahorn-Eschen-reichen Lehm-Buchenwaldes aus dem steilen Schafhittlwald westlich der Kölbalm.

Foto 12: Stark vergraste Fichtenforste auf der Standortseinheit "Mittelmontaner Lehm-Fichten-Tannen-Buchenwald" (PNV-Gesellschaft Cardamino trifoliae-Fagetum) im Kessel nordöstlich von Gstatterboden.

Foto 13: Standortseinheit "Felsnase mit Fels-Auflagehumusboden" auf Kalkklippen im Bereich von Ramsaudolomithängen (Westflanke des unteren Johnsbachtales).

Foto 14: Standortstyp "Silikatische Enns-Schotter": Umfeld von Aufnahmefläche C87 (Ältere Enns-Konglomerate nach Ampferer 1935) mit besonders reichlicher Buchenverjünung.

Foto 15: Aufnahmefläche C74 mit für die Standortseinheit "Fichten-Tannenwald über tiefgründigen Lehmen" typischem farnreichem Aspekt

Foto 16: Standortseinheit "Bodensaurer Torfmoos-Fichtenwald typische Variante" über Grauwackensandstein (Bereich von Aufnahmefläche C56) mit der hier typisch aspektbestimmenden und starkwüchsigen Heidelbeere.

Foto 17: Standortseinheit "Subalpiner schattseitiger Lärchenwald" im Herbstaspekt am Lärchkogl (Südostumrandung des Sulzkars).

Foto 18: Lärchen-Zirbenwald östlich des Hüpflinger Halses (ca. 1725 m Seehöhe, Standortseinheit: "Lärchen-Zirbenwald auf grobblockigem Plateau").

Foto 19: Grauer Carbonathaltiger Auboden aus Enns-Sanden (Standortseinheit "Silberweidenau (mit Lavendelweide)", Aufnahme C22).

Foto 20: Carbonathaltiger Schwemmboden über ennsbegleitendem Kies-Schotter-Körper (Standortseinheit "Grauerlenau über Schwemmboden", Aufnahme C02).

Foto 21: Braunerde aus eiszeitlich abgelagerten silikatischen Enns-Schottern (Standortseinheit "Silikatische Enns-Schotter", Aufnahme C79).

Fotoautor aller Fotos mit Ausnahme von Foto 12 ist Anton Carli. Foto 12 stammt von Johannes Stangl.

3. Ergänzungen zur Methodik hinsichtlich Vegetationsdaten

Tabelle der Skala für die Vegetationsaufnahmen nach REICHELT G. & WILMANNS O. 1973: Vegetationsgeographie. Georg Westermann Verlag. Braunschweig:

Deckung im Bestand	Skalenwert
75-100%	5
50-75%	4
25-50%	3
16-25%	2b
5-15%	2a
<5% aber mehr als 50 Individuen	2m
1-5%	1
spärlich, nur wenig Fläche deckend	+
ganz vereinzelt (meist nur 1 Exemplar)	r

Zur gemeinsamen digitalen Sortierung des gesamten Aufnahmepools mussten die Skalenwerte 2m, 2a und 2b später wieder unter dem Klassenwert 2 zusammengefasst werden.

Tabelle mit Zeigerwerten nach Ellenberg H, Weber H.E., Wirth V, Werner W. & Paulißen D. 1992:

Zeigerwerte von Pflanzen in Mitteleuropa. Erich Goltze KG. Göttingen:

Wert	Feuchtezahl (F-Zahl)	ReaktionsZahl (R-Zahl)	Stickstoffzahl, Nährstoffzahl (N-Zahl)
1	Starktrockniszeiger	Starksäurezeiger	stickstoffärmste Flächen
2	zw. 1 und 3	zw. 1 und 3	zw. 1 und 3
3	Trockniszeiger	Säurezeiger	stickstoffarm
4	zw. 3 und 5	zw. 3 und 5	zw. 3 und 5
5	Frischezeiger	Mäßigsäurezeiger	mäßig stickstoffreich
6	zw. 5 und 7	zw. 5 und 7	zw. 5 und 7
7	Feuchtezeiger	Schwachsäurezeiger	stickstoffreich
8	zw. 7 und 9	zw. 7 und 9	Stickstoffzeiger
9	Nässezeiger	Basen u. Kalkzeiger	übermäßig stickstoffreich

4. Tabelle der Bodenprofile

Zunächst sind Angaben zur Methodik der Datendarstellung sowie verwendete Abkürzungen aufgelistet.

ad Angaben zur Horizontabgrenzung:

Schema zur Angabe der Deutlichkeit der Horizontabgrenzung: 1: <1 cm; 2: 2-5 cm; 3: 5-10 cm; 4: >10 cm.

Schema zur Angabe der Form der Übergangszone zwischen Horizonten: g: gerade, w: wellig, t: taschenförmig, u: unterbrochen

ad Angabe von Bodenart und Schwereklasse:

Schwereklasse	zugehörige Bodenarten
I	Sand (S), schluffiger Sand (uS)
II	lehmiger Sand (IS), sandiger Schluff (sU), Schluff
III	toniger Sand (tS), sandiger Lehm (sL), lehmiger Schluff (lU)
IV	sandiger Ton (sT), Lehm (L), schluffiger Lehm (uL)
V	lehmiger Ton (IT), Ton (T)

ad Angabe Skelettgehalt:

Klasse	%-Anteil am Bodenvolumen
1	<10
2	10-20
3	20-40
4	40-80
5	>80

ad Angaben zu Material Streu:

BAh: Bergahorn, Bu: Buche, Fi: Fichte, GEr: Grauerle, Gr: Gräser, Ki: Rotkiefer, Kr: Kräuter, La: Latsche, Lä: Lärche, LWe: Lavendelweide, Mo: Moose, Sc: Schneeheide, SWe: Silberweide, Ta: Tanne, To: Torfmoos, Zi: Zirbe, Zw: Zwergsträucher;

ad Angaben zur Lagerung der Humushorizonte:

bre: brechbar, brö: bröckelig, ko: kompakt, kö: körnig, lo: locker, sch: schichtig, ve: verklebt.

ad Angaben zu Fleckung und und Konkretionen:

Drei Typen von Flecken wurden unterschieden: graue Bleichflecken (Abkürzung B) und rotbraune Rostflecken auf (R) sowie Humusflecken (H).

Die Ausdehnung der Flecken wurde bei der Bodenaufnahme nach denselben Prozentklassen wie der Skelettgehalt geschätzt (siehe obige Tabelle). Weiters wurde zwischen deutlicher (d) und undeutlicher (u) Ausprägung der Flecken unterschieden. Mit undeutlicher Ausprägung ist gemeint, dass die Flecken nur an Bruchstücken, aber nicht an der (aufgerauten) Profilwand zu erkennen sind.

ad Carbonattest:

Der Carbonattest im Gelände erfolgte mit 10prozentiger Salzsäure auf optisch und akustisch wahrnehmbare Reaktion. Der Wert 0 in der Tabelle der Bodenprofile bedeutet weder hör- noch sichtbare Reaktion. Bei wahrnehmbarer Reaktion wurde deren Heftigkeit auf einer Skala von 1 bis 4 eingestuft.

ad Angabe der Durchwurzelung:

Die Aufnahme der Durchwurzelungsintensität der Feinwurzeln erfolgte nach folgendem Schema (für Auflagehumus wie Mineralboden):

Klasse	Durchwurzelung	Feinwurzeln/dm ²
1	schwach	1-5
2	mittel	6-10
3	stark	11-20
4	sehr stark	21-50
5	Wurzelfilz	>50

Bodenprofil-Aufnahmen zur forstlichen Standortserkundung für das Gesäuse

Aufnahmenummer	Bodentyp/ Humusform	Horizontbezeichn.	von cm	bis cm	Horiz.abgr. Deutl.	Horiz.abgr. Form	Bodenart	Schwereklasse	Skelettgehalt 1	Skelettart 1	Skelettgehalt 2	Skelettart 2	Material Streu	Lagerung Humushorizonte	Bodenfarbe	Fleckung 1 Ausdehn.	Fleckung 1 Deutl. Fleckung 1 Art	Fleckung 2 Ausdehn.	Fleckung 2 Deutl.	Fleckung 2 Art	Konkretionen	Carbonate	Durchwurzelung	Regenwurmaktivität
Aubö																								
C22	Typischer Mull	Lv	0.50	0.00				į			i		SWe,LWe,Kr	lo									0	
		Fz	stw.					<u> </u>						lo				<u>i</u>					0	
	grauer Carbonathaltiger	Ahb	0	1	2	g	sU											1				4	4	
	Auboden	Ca	1	8	1	g	sU	II										i				4	3	
		A1beg	8	10	1	g	sU	II														4	4	
		C1	10	25	1	g	uS	I														4	3	
		A2beg	25	28	1	g	lS	II			į											4	2	
		C2	28	81	3	g?	S	I			į							1				4	1	
		C3	81	120+			S	I	1	Ki	<u> </u>							<u> </u>				4	1	_
C06	Typischer Mull	Lv	0.50	0.00				İ			į		GEr,Kr	lo				1					0	
		Fzo	stw.								1			lo				<u> </u>					0	
	Carbonathaltiger Augley	Ahb	0	5/7	1	w	sL											. ! .				5	3	
		ACg	5/7	16/17	1	w	sU	II			į					1	d F	1 3	u	В		5	1	
		Abeg	16/17	24/26	1	W	sU	II			i							_		_		5	?	
		C1g	24/26	65	3	g	S	I								١	II D	3	u	В		5	ı	
		C2g	65	123 164	4	g ?	uS	I I			į						U R d R			B B		5 5	ı	
		Gr,o C3n	123 164	164 176+	1	′	uS S	I	3	fmKi	i					2	d R	3	d	В		5	ı	
G02	m : 1 M II						ъ	1	3	IIIIKI	-		DALE:	1				+				3		
C02	Typischer Mull	Lv	2.00 1.50	1.50							į		BAh,Fi	lo									0	
	Carbonathaltiger	Fz Ahb	0	0.00 9/11	1	w	sL	III	1	fmgKi	+			lo				÷				2	4	_
	Schwemmboden	Ca	9/11	19/21	2	w	SL	I	4	fmgKi	2	Sch						İ				4	1	J
	Schweninboden	Cn	19/21	27+		l "	S	Ţ	4	fmgKi	2	Sch						1				4	1	
C34	Typischer Mull	Lv	0.50	0.00			5	-	7	illigiti		Bell	Bu,BAh	lo				╁				7	0	-
C34	stark verbraunter,	Ahb	0.50	40	3	σ	sL	III			-		Du,DAII	10				÷				4	3	-
	Carbonathaltiger Auboden	B(C)	40	105	?	g ?	IS				į				2,5Y 4/2,5							4	2	- 1
	Carbonathatiger / tuboden	BC?	105+	103			15	"	3?	Gr	İ				2,31 4/2,3							7	,	
C03	Typischer Mull	Lv	0.75	0.50			1	 		<u> </u>			Se,Es,BAh	lo				Ť		\dashv			0	\dashv
	Typositer mair	Fzm	0.73	0.00				<u> </u>			ĺ		50,25,07111	lo									2	
	tw. vergleyter	Ahb	0.50	18	1	g	L	IV						.0				+		-		5	3	\dashv
	(, gering verbraunter)	AC	18	24	1	g	sL	III	4	Gr	İ		Gr					İ				5	1	- 1
	Carbonathaltiger Auboden	Cv	24	35	1	g	1S	II			ĺ				10YR 4/2			İ				5	2	i l
	2	Cg	35	46	1	g	lT	V			i					2	d E	3				5	1	
		C1u	46	75	1	g	uS	I	4	Gr	į		Gr					ĺ				5	1	
		C2u	75	100+	1	g	uS	I			İ					1	u R					4	?	- 1

C44	Typischer Mull	Lv	0.50	0.00	I		I	i			1		Fi	lo				i		0
	verbraunter,	Ahb	0	9	2	g	uL	IV			1							i	4	3 j
	Carbonathaltiger Auboden	AC	9	16/19	1	w		Ш										•	4	2
		Abeg	16/19	28	2		lU	III										-	4	2
		AB	28	42	2		sL	Ш										ļ	4	1
		В	42	67	1		uL												4	1
		Cv	67	80+			S	V	3	fmKi									5	?
C59	Typischer Mull	Lv	0.75	0.25									Fi	lo				İ		0
		Fz	0.25	0.00				İ						lo						2
	vergleyter, verbraunter	Ahb	0	4/7	1	w	sL	III										İ	2	3
	Auboden	AB	4/7	15	2	g	lS	II										į	4	3
		BC	15	70	2	?	uS	I							2,5Y 3,5/2	1	u B	1 u R	4	2
		Cn	70	82	1	?	S	I			•				2,5Y 4/2				4	1?
		Cg	82	120			uS	I							2,5Y 3,5/2	1	u B	2 u R	4	1?
C01	Mullartiger Moder	Lv	2.50	2.00				!					Bu,Fi,Gr	lo						0
		Fzm	2.00	0.50				-						lo				ļ		3
		Hzm	0.50	0.00				<u> </u>			<u> </u>			ko				<u> </u>		3
	gering verbraunter,	Ahb	0	8/10	1	g	sL	III											0	3 ј
	Carbonathaltiger Auboden	AC	8/10	24	1	0	sL	III			•					3	d H		3	2
		Cn	24	43/46	1	g	S	I	1	fmGr								į	4	1
		Cv	43/46	90			lS	II							2,5Y 4/2			į	3	1
			90+	SCHOT	TERI	KÖRF	PER?	<u> </u>										į		
C47	Moderartiger Mull	Lv	1.00	0.50				•					Fi	lo						0
		Fzm	0.50	0.00				-						lo				ļ		2
		Hzm	stw.											lo						2
	Carbonatfreier	Ahb	0	6	2				2	Ki	1	Sch,Bl							0	4
	Schwemmboden	AC	6	19	2		lS	II	4	Ki	1	Sch,Bl							0	2
		Abeg	19	33	2	w		III	2	Ki	3	Sch,Bl						į	0	2
		BC	33	38+			L	IV	2	Ki	4	St,Sch,Bl						<u>i</u>	0	1
Anmo				1							_									
C75	Typischer Mull	Lv	0.50	0.00	_								Fi,GEr	lo				<u> </u>		0
	Anmoor	Ag	0.00	40.00	2	w			1	Gr	1	St					d R		0	3 j
		Gr	40	80+			uL	į	2	Gr	!					5	d B		5	1
	erstandorte - feinbodenarme Star				ldst	ando	rte				_									
C35	Pech-Rendzina	Lv	2.75	2.00									Fi,Mo	lo				-		0
		Fm	2.00	0.00										lo,ve				•		3
	Pech-Rendzina	Hm	0	63+		1	_	<u> </u>	3	Bl	<u>i</u>			ko				!	0	3
C11	Rohhumusartiger Moder	Lv	20.50	20.00									Lä	lo						0
		Fzm	20.00	19.00				!						lo(,ve)				į		2
		Hzm	19.00	0.00	1		_	<u> </u>	1	Gr	1			kö				<u> </u>	0	4
	Moder-Rendzina	AB	0	9/13	2				3	Gr								İ	4	3
	aus Hangschutt	(B)C	9/13	38	3	g	L	IV	5	Gr								İ	5	2
		Cv	38	48			L	IV	5	Gr	1	St						İ	5	1?

C68	Rohhumusartiger Moder	Lv	9.25	7.00				1			1		Fi(,Bu)	lo		i	T	0
	Tromanius artiger Model	Fmz	7.00	6.00									11(,24)	lo,ve				2
		Hmz	6.00	0.00	2	g		•	1	Gr	İ			kö		1	0	4
	Moder-Rendzina	AC	0	10	2	g	uL	IV	4	Gr	3	St				1	4	3
	aus Hangschutt	Cv(a)	10	95+			uL	IV	4	Gr	4	St					4	2-1
C14	Rohhumusartiger Moder	Lv	14.00	13.00				İ					Bu	lo		i		0
	<u> </u>	Fmz	13.00	10.00							İ			sch				3
		Hmz	10.00	0.00	1	w		•			İ			kö	7,5YR 1,7/1		0	4
	Moder-Rendzina	AC	0	7/14	1	w	sU	II	5	Gr					10YR 2,5/2		2	3
	aus Hangschutt	Cv	7/14	20	3	g	S	I	5	Gr	1	St			2,5Y 7/3	į	4	2
		Cn	20	90+	3	g	S	I	5	Gr	1	St			2,5Y 8/1,5	İ	4	?
C17	Rohhumusartiger Moder	Lv	6.50	6.00							i		Ki,La,Zw	lo				0
	-	Fmz	6.00	3.50				-						lo(,ve)		-		4
		Hzm	3.50	0.00				<u> </u>						lo,ve		ļ		5
	Moder-Rendzina über	AC1	0	10	2	g	sL	III	4	Gr	3	St					4	4
	begrabener Rendzina	AC2	10	47	1	g	sU	II	5	Gr	1	St					4	2
	aus Hangschutt	Abeg	47	62	2	g	uL	IV			2	St					0	4
		ACv	62	71+			sU	II	4	Gr	3	St					4	1?
C38	Rohhumusartiger Moder	Lv	7.50	7.00				į			-		Fi	lo				0
		Fzm	7.00	6.00				ĺ			İ			lo				1
		Hzm	6.00	0.00										lo				4
	Moder-Rendzina	Ca	0	8	2	g	sL	III	5	Gr	1	St,Bl				İ	4	4
	über Kalklehm-Rendzina	Cv	8	36	1	w			5	Gr	1	St,Bl					4	1
		Abeg	36	46	1	?	uL	:	2	Gr	2	St,Bl					4	2
		BC	46	52+			uL	IV	3/4?	Gr	?	St,Bl				<u> </u>	4	1?
C67	Rohhumusartiger Moder	Lv	18.00	17.00				İ					Ki,Fi	lo		į		0
		Fzm	17.00	13.50				•			į			lo,ve		İ		3
		H1zm	13.50	12.00				ĺ			i			lo				4
		H2zm	12.00	0.00	2	g		<u> </u>	1	Gr				kö			0	4
	Moder-Rendzina	AC	0	28/34	2	w	uL	IV	5	Gr	1	St				1	4	3
		Ca	28/34	58+				ļ	3	Gr	4	St,Bl					4	1
C42	Rohhumusartiger Moder	Lv	33.00	32.00				!			i		Fi	lo		1		1
		Fmy	32.00	26.00				İ						ve(,lo)				3
		Hmy	26.00	0.00	1	w		<u> </u>			<u> </u>			kö		į	0	4
	Kalklehm-Rendzina	Ahb	0	9	3	g	lT	V								į	0	3
	über Fels(Blöcken)	Ba	9	19/24	1	w	lT	V								į	0	2
		Cn	19/24+					į									5	
C53	Rohhumusartiger Moder	Lv	25.50	23.50			1	!					Bu,Fi	lo,ve			T	2
		Fm	23.50	19.50				į						ve				2
		Hmz	19.50	0.00	\bot		\perp				<u> </u>			lo		<u> </u>		3
	gereifte	Ahb	0	5	2	W	uL				1						2	4
	Moder-Rendzina	AC	5	14	2	W	uL		5	Gr	Ī						2	3
	aus Hangschutt	(B)C	14	43+			1S	II	5	Gr	1	St				<u> </u>	4	2-1

CS2 Robhumusartiger Moder Finz 7,00 4,00 1 Gr 6 1 St St		i		: 1	E. 17.		1		1		1 :			7.00	0.00	T	C92	C02
Hzm		!		•	F1,K1													C82
Moder-Rendzina	4	<u> </u>		Ē				_							-		Rohhumusartiger Moder	
Moder-Rendzina CB) C 10	1 3			lo			<u> </u>		1									
CV	4 3	!										g	2					
C78 Rohhumusartiger Moder	5 2	•					1					g	3		•		Moder-Rendzina	
Rohhumusartiger Moder	5 1					St	1	Gr	5		uS			100+	16	Cv		
H1 20.00 7.00 1 w 1 Gr ko br	3			lo,ve	Ki,Fi									25.00	27.00	Lv	C78	C78
H2	5	!		lo,ve										20.00	25.00	Fm	Rohhumusartiger Moder	
Moder-Rendzina AC O S 2 g uS S 4 Gr Gr Gr Gr Gr Gr Gr	1 4	!		ko						ł				7.00	20.00	H1		
Biber begrabener C1v 5 26 37 2 w uL 1 Gr Gr St St St St St St St S	1 4			br				Gr	1			w	1	0.00	7.00	H2		
Biber begrabener C1v 5 26 37 2 w uL 1 Gr Gr St St St St St St St S	5 3						1	Gr	4		uS	g	2	5	0	AC	Moder-Rendzina	
Rendzina	5 2	!							5			w		26	l 5		über begrabener	
C2v 37 100+ sU 4 Gr 1 St	5 3	!									1		2			Abeg		
C73 Rohhumusartiger Moder	5 1	!				St	1		4									
Fmz 13.00 10.00 2 g 2 Gr	2	<u>i</u>		lo	Fi Ki		1										C73 Robhumusartiger Moder	C73
Hzm		!		•	11,101										•		C73 Komunusaruger Woder	C13
BC	0 4	<u> </u>		:				C.	2			_	1		•			
BC	4 4			KO			1				αĬ		2				Walldahaa Dandaina	
C72 Typischer Mull						C.	1						2				Kaikienin-Rendzina	
C72 Typischer Mull	5 3	!					1					W	2					
Fzm 0.50 0.00	5 2-1	!				St(BI)	3	Gr	4	<u> </u>	uS							
Kalkbraunlehm aus Grus	0																C72 Typischer Mull	C72
AB 15 19 1 g uL 1 Gr 3 Gr 1 St St St St St St St	1	!		lo	Gr,Kr,Fi									+				
B 19 45 2 g uL 3 Gr 1 St St St St St St St	0 4 j	!							1			g	1				Kalkbraunlehm aus Grus	
C81 Rohhumusartiger Moder	1 4	!						Gr	1	ł	uL	g		19	15	AB		
C81 Rohhumusartiger Moder	4 3					St	1		3		uL	g	2		19	В		
Fmz	5 1					St	1	Gr	5		sL			90+	45	(B)Cv		
Fmz	0			lo	Fi									6.00	7.00	Lv	C81 Rohhumusartiger Moder	C81
Hzm	1	!		lo,ve										4.50	6.00	Fmz		
Skelettreicher	4	!		lo										0.00	4.50	Hzm		
Kalkbraunlehm aus Grus BC 20/24 80 4 ? sU 4 Gr 1 St St St St St St St	2 3	i					1	Gr	1		L	w	1				skelettreicher	
mit Kappung	5 2	!				St	1		4						20/24			
C36 Rohhumusartiger Moder	5 1	<u> </u>					12											
Fmz 14.50 11.00 lo,ve Hmz 11.00 0.00 1 g	0		1	lo	Ru Sc		1	<u> </u>	Ť							` '		C36
Hmz 11.00 0.00 1 g	5			:	Du,SC												Coo indinuisarugei wodei	C30
Hmz 11.00 0.00 1 g 1		!		•									١.,		_			
	2 4	!		КО		C.	1	C	-	13.7			1		-			
gereifte AC 0 11 2 g uL IV 4 Gr 1 St 10VD 5/2		!	107/70 5/2				• •										2	
Moder-Rendzina BC 11 36 4 w sL III 4 Gr 2 St 10YR 5/2	5 2	!					:					W	4		_			
aus Hangschutt Cv 36 69+ sL III 5 Gr 2 St 10YR 7/3	5 1	!	10YR 7/3			St	2	Gr	5	III	sL		ļ				_	
C77 L 14.00 13.00 Sc lo,ve	2	•		lo,ve	Sc											L		C77
Rohhumusartiger Moder Fmz 13.00 9.00 lo,ve	4	!		lo,ve						•					13.00	Fmz	Rohhumusartiger Moder	
Hzm 9.00 0.00 brö	4 4	<u> </u>		brö										0.00	9.00			
Moder-Rendzina AC 0 6 1 g sU 4 Gr	5 3	!						Gr	4		sU	g	1	6	0	AC	Moder-Rendzina	
Cv 6 100+ us 5 Gr	5 3-1	!						Gr	5	į	uS			100+	6	Cv		

C33	Rohhumusartiger Moder	Lv	18.00	17.00				i					Ki,Sc	lo,ve			i		1	
		Fmy	17.00	13.00				!						lo,ve			}		5	
		H1my	13.00	9.00				1						lo,ve			ł		5	
	Moder-Rendzina über	H2mz	9.00	0.00	1	w			4	Gr				kö				1	5	
	begrabener	AC	0	21	1	g	sL	III	4	Gr	1	St					į	4	4	
	Kalklehm-Rendzina	Abeg	21	33	2	g	sL	III	4	Gr							}	4	4	
	aus Hangschutt	(B)C	33	68+			sL	III	5	Gr	1	St					ļ	4	2-1	
C31	Rohhumusartiger Moder	Lv	14.50	14.00				į					Ki,Sc	lo			1		1	1
		Fmz	14.00	11.00				İ						lo					5	
	Moder-Rendzina	Hmz	11.00	0.00	2	w		•						kö				0	4	
	aus Hangschutt	AC	0	6	3	g	uL	IV	4	Gr								4	4	
	(leicht verkittet)	Cn	6	144+				•	5	Gr	1	St						5	1	
C37	Typischer Moder	Lv	4.50	4.00				! 	1				Fi,Ki	lo				\Box	0	1
	Typisener ividue	Fmz	4.00	0.50				1					1 1,121	lo(,ve)			•		4	
		Hmz	0.50	0.00				İ						lo			İ		4	
	Moder-Rendzina	Ahb	0	14/21	2	w	uL?	IV	3	Gr	1							2	4	i
	über anstehendem Fels	Ca	14/21	46	1	?	L	IV	4	Gr	3	St,Bl						4	3	,
		Cn	46+								5	Bl						1 1		
C07	Moder	Lv	5.00	4.50	1		1	 					Ki	lo			1	\sqcap	0	\vdash
Cor	Wodel	Fmz	4.50	0.00				-					IXI	lo,ve			ļ		5	
	Moder-Rendzina über	Ahb	0	10/13	2	w	+	:	1	fmgGr				10,10			<u> </u>	3	4	1
	anstehendem Fels	AC1	10/13	15/22	2	w		1	2	fmgGr	1	St					į.	3	4	
	distendent i eis	AC2	15/22	33/36	2	g			5	fmgGr	1	St					ļ	4	2	
		Cn	33/36	70+	-	5		!	5	Bl		5.						4	?	
C85	Rohhumus	Lv	16.00	14.00	1		1	! 	1		1		Ki,Fi	lo			†	\vdash	1	+
Cos	Fels-Auflagehumusboden	Fmz	14.00	7.00				1					Ki,i i	bre,ko			•		4	
	auf Kalkfels	HmzC	7.00	0.00				İ	3	St(,Bl)				lo			į	1	4	
	dui Kaikieis	Ca	0	12+	_		uL	IV	5	St(,Bl)	1			10			+	1	4	_
Kalk	hang-Buchen- und Kalkhang-Fic				_	1	u.L		Ü	51(,21)	•			•			-	<u> </u>		
	Rohhumusartiger Moder	Lv	(11)10.5	10.00	1	I	1	i			:		Fi,BAh	lo			ı	$\overline{}$	0	$\overline{}$
C30	Komunusaruger Woder	Hzm	10.00	0.00	1	g		İ			2	St,Bl	11,DAII	St,Bl				3	4	١,
	Moder-Rendzina	AC	0	4	1	g	sL	III	5	Gr	2	St,Bl		St,Di				4	3	1
	Woder-Kendzina	Cv	4	45+	1	B	SL		5	Gr	2	St,Bl						5	1	
065	Rohhumusartiger Moder	Lv	11.75	11.00	1		1	! 	-	Gi	-	Dt,D1	Fi,Bu	lo			i	\dashv	1	+
C05	Ronnumusartiger Moder	Fmz	11.73	9.25				1					FI,DU				•		3	
		Hmz	9.25	0.00	2	_		1			1	St		lo,ve kö			•	0	4	
	gereifte Moder-Rendzina	AC	0	8	2	g	uL	IV	3	Gr	4	St		KO			<u> </u>	4	3	_
	aus Hangschutt	((B))C	8	86+		g	lS	II	5	Gr	2	St					į	5	2-1	
~	ų .	***************************************			-	<u> </u>	19	11	3	Gi		St					<u> </u>			₩
C66	Mullartiger Moder	Lv	3.00	2.00	1		1	İ					Bu,Fi	lo				1 1	0	
		Fzm	2.00	0.50										lo,sch				1 1	3	
		Hzm	0.50	0.00	١.	_	H.	1 77.7	ļ ,		-			lo			+	البا	4	₩
	skelettreicher Kalkbraunlehm	Ahb	0	9	1	g	uL	IV	1	Gr								4	4	1
	aus Grus(Steinen)	AB	9	16	2	g	L	IV	4	Gr		~						4	3	
		Ba(Cv)	16	27	1	g	sL	III	4	Gr	1	St					1	5	1	
		Cv	27	95+	1	1	S	I	4	Gr	1	St		•	ĺ	1	Ì	5	1	1

C54	Rohhumusartiger Moder	Lv	12.50	10.50				Ī					Bu	lo		<u> </u>	T	0
	Tomanusuriger 1120der	Fzm	10.50	9.00				į					5	lo				2
		Hzm	9.00	0.00	1	g		į						kö			0	4
	Kalkbraunlehm	Ahb	0	17	2	g	lT	V	1	St	1			RO		i	0	4
	über Fels(Blöcken)	Ba	17	(17)34	1	w	lT		3	St					2 d	н	0	3
	doer reis(Brocken)	Cn	(17)34+	(17)31	1	"	1.	į '	5	Bl					2 0		5	
C60	Rohhumusartiger Moder	Lv	4.50	3.50	1	1	1	<u> </u>			+		Bu	lo		<u> </u>		0
C09	Kolliumusartiger Woder	Fmz	3.50	0.50				į					Bu	lo,sch		į		4
		Hmz	19.00	0.00	1	g		į	1	gGr	3	St,Bl		kö			0	4
\vdash	Kalklehm-Rendzina	Ahb	0	15	2	g	uL	IV	1	gGr	4	St,Bl		KU		- 	2	3
	über Fels(Blöcken)	(B)C	15	36+	-	B	lT	V	1	Gr	5	St,Bl					4	1
	Rohhumusartiger Moder	Lv	35.00	33.50	1	1	11	<u>i '</u>	1	- Oi	3	ы,ы	D	1.		<u>;</u>	+	-
C45	Rohhumusartiger Moder		1					į					Bu	lo				0
		Fzm	33.50	31.00	١.			į		-	1,	a. Di		lo,ve		į		3
\vdash	77 H.I.I. D. I.I.	Hzm	31.00	0.00	1	W	100		2	gGr	4	St,Bl		kö		<u> </u>	0	4
	Kalklehm-Rendzina	BaC	0	19+	₩	₩	lT	V	2	Gr	4-5	St,Bl					2	3-2
C04	Mullartiger Moder	Lv	5.00	3.00				Ì					Bu,Fi	sch(,lo)		•		0
		Fmz	3.00	0.50				į						lo,ve				4
		Hzo	0.50	0.00				<u> </u>			<u> </u>			brö				4
	Kalkbraunlehm	Ahb	0	9/12	1	w	L	IV	1	fmgGr							2	3
1	aus Grus(Steinen)	Ba	9/12	24/28	1	w	sL	Ш	1	fmgGr	3	St					5	2
		BC	24/28	46	2	g	uS	I	2	fmgGr	2	St						1.5
		Cv	46	80+			S	I	4	fmgGr	2	St					5	1
C43	Rohhumusartiger Moder	Lv	29.00	22.00				ĺ					Bu,Fi	lo,ve		İ		1
		Fzm	22.00	17.00				ļ						ve(,lo)		•		3
		Hzm	17.00	0.00	1	g			1	gGr	1	St		kö			0	4 j
	Kalklehm-Rendzina	Ahb	0	10	3	g	L	IV	1	gGr	1	St		•		ļ	0	3
í	über Grus(Steinen)	AB	10	17/22	3	w	L	IV	2	Gr	2	St				į	2	2
		BC	17/22	33+			sL	III	1	Gr	4	St				į	4	1?
C05	Rohhumusartiger Moder	Lv	15.50	14.00				}					Bu,Fi	lo		į		0
	-	Fmz	14.00	6.00				ļ						bre(,ve)		į		4
		Hmz	6.00	0.00				ļ						ko(,brö)		į		5
	Moder-Rendzina	AC1	0	38/42	2	w	L	IV	3	fmgGr	3	St				•	3	4
		AC2	38/42	63+			L	IV	3	fmgGr	4	St,Bl					3	1
C21	Typischer Moder	Lv	8.00	7.00				į		-			Bu,Fi	lo		•	T	0
		Fmz	7.00	4.00				į					,	sch				3
		Hmz	4.00	0.00				į						lo				4
	Kalklehm-Rendzina	Ahb	0	4	2	w	sL	III			1						0	4
	über Fels(Blöcken)	AB	4	14/17	2	w	sL	Ш	1	Gr	1	Bl				į	4	3
1 1					1	"	sL	III	5	Bl		-			1 d	н	4	?
	,	Cv	14/17	37+										=				
					<u> </u>		52				1		Ru	lo.			+	0
	Rohhumusartiger Moder	Lv	9.50	8.75			52						Bu	lo lo				0 2
		Lv Fzm	9.50 8.75	8.75 8.00	1	σ	52		1	oGr				lo			0	2
C13		Lv	9.50	8.75	1 2	g	uL		1	gGr Gr	1	St	Bu gGr				0 2	

C10	Typischer Moder	Lv	4.25(3.75)	3.75				į					Bu(,Fi)	lo				T	\neg	0
010	Typisener moder	Fzm	3.75	3.00				į					24(,11)	lo,ve						1
		Hzm	3.00	0.00				į						ko(,brö)						3
		Ahb	0	6	1	g	L	IV	1	Gr				KO(,510)				$\overline{}$	0	4 j
	Kalkbraunlehm	AB	6	17	2	g	L	IV	1	Gr	1	St							2	3
	aus Grus(Steinen)	В	17	45	1	?	uL	IV	1	Gr	3	St							4	3
	aus Grus(Steinen)	Cv	45	62+	1		uS	ī	3	Gr	4	St					İ		4	1?
C70	Touris de la Madeir		-				ub		-	- Gi	+ -	Di	Ta,Fi	1 1.		-	<u>!</u>	++	\dashv	
C/0	Typischer Moder	Lv	5.00	3.00				1					1 a,F1	lo			į			0
		Fmz	3.00	1.50				1						lo,ve			į			2
	77 11 1 1 1	Hmz	1.50	0.00			· ·	13.7	-		-			lo			 	\longrightarrow	\rightarrow	4
	Kalkbraunlehm	Ahb	0	6	2	g	uL		2	Gr							! !		2	3
	(Raibler Schichten)	AB	6	17	2	g	uL		3	Gr							l l		4	3
		В	17	31	2	g	T	V	2	Gr									4	2
		C1v	31	47	2	g	T		5	Gr						2 d R	!		4	1
		C2v	47	85+			T	V	1	gGr,St							<u>!</u>		4	1
C08	Rohhumusartiger Moder	Lv	12.00	11.00				!					Bu,Fi	lo			!	1 1		0
		Fmz	11.00	8.00				1						lo(,ve)			•			3
		Hzm	8.00	0.00	1	g		İ						kö			į		0	4 j
	Kalklehm-Rendzina	AB	0	9	1	g		Î	2	fmgGr				1			ĺ		2	3
	aus Grus(Steinen)	(B)C	9	93+				į	4	fmgGr	3-4	St							5	1
C12	Rohhumusartiger Moder	Lv	22.75	22.00							1		Fi	lo			! !		\neg	0
		Fzm	22.00	20.00				į						lo(,ve)						3
		Hzm	20.00	0.00	2	g		1	2	mgGr	2	St		kö			į		0	3 j
	Kalklehm-Rendzina	Ahb	0	10/18	2	w	sL	III	3	Gr	2	St		1					4	2
	aus Grus(Steinen)	BC	10/18	32	3	g?			4	Gr	1	St							4	1
	aus Grus(Steinen)	Cv	32	50+		δ.	sL		5	Gr	1	St							4	1?
016	Rohhumusartiger Moder	Lv	13.50	12.50			3L	- 111	-	Gi	+ -	Di.	Bu	1 1.			<u>:</u>	++	-+	0
C10	Romumusartiger Moder							į					ьu	lo						
		Fmz	12.50	10.00				İ						lo,ve			:			4
	10 14 1 15 11	Hmz	10.00	0.00			-	77.7			1			lo,brö			<u> </u>	\longrightarrow	_	4
	gereifte Moder-Rendzina	Ahb	0	3/5	1	w			1	St							}		0	4
	aus Grus(Steinen)	AB	3/5	17	2	g			4	Gr	4	St			7,5YR 2/1				0	2
		Cv	17	42+			sL	III	4	Gr	4	St,Bl		<u> </u>			<u> </u>		5	1
C09	Typischer Moder	Lv	5.50	5.00				1					Fi	lo						0
		Fzm	5.00	4.00				1						lo			}			0
		Hzm	4.00	0.00				İ						lo,brö						2
	Kalkbraunlehm	Ahb	0	8/10	2	w	uL	IV									!		0	3
	aus Grus(Steinen)	AB	8/10	24	2	g	lT	V	1	gmGr							į		0	2
		В	24	80	3	?	uL	IV	1	fmgGr	2	St					į		0-4	1
1	1	Cv	80	101+			L?	į	3	fmgGr	?	St					į		4	?
I		CV					+	1	1		•		ъ г	lo,ve		i –			-	
C41	Rohhumusartiger Moder	Lv		6.00				Ĭ.			1		Bu.Fi	io.ve			1		ı,	0
C41	Rohhumusartiger Moder	Lv	7.00	6.00 5.00									Bu,Fi	i '						0
C41	Rohhumusartiger Moder	Lv Fzm	7.00 6.00	5.00									Bu,Fi	lo,ve						1
C41	Rohhumusartiger Moder	Lv	7.00		2	g	uL	IV			4	St,Bl	Bu,F1	i '					0	

tische Enns-Schotter																						
Mullartiger Moder	Lv	2.50	1.00				į					Bu(,Fi)	lo				į					0
	Fzm	1.00	0.50							į			sch				ļ					2
	Hzm	0.50	0.00							1			lo				į					4
	Ahb	0	7	1	g	L	IV	1	fKi	I							ĺ				0	4
carbonatfreie	Ba	7	20	2		L	IV	2	fmKi	İ							į				0	3
Braunerde	В	20	90	2	?	sL	III	4	Ki	1	Sch						į				0	1
	Bg	90	100+			uL	IV	4	Ki	?	Sch		•		1	d	R				0	1
	Lv	3.50	2.75				!					Fi	lo				Ī					1
Typischer Moder	Fzm	2.75	2.00				į			İ			lo				i					3
	Hzm	2.00	0.00				į			İ			brö				i					3
skelettreiche	Ahb	0	6	1	g	uL	!	2	Ki	Ī							ĺ				0	3
carbonatfreie	AB	6	26	2		uL	į	3	Ki	2	Sch,Bl		•				i				0	2
	BC	26	80+			uL	į	4	Ki	2	Sch,Bl		•				į				0	1
en-Tannenwald								•					•	•							-	
Typischer Mull	Lv	1.25	0.75				!					Fi,Kr	lo				ŀ					0
	Fzm	0.75	0.00										lo				İ					2
Haftnässe-Pseudogley	Ahb	0	12	3	t	uL	IV			1							Ť				0	3
aus carbonatfreiem	Ba,gd	12	21	2	w	uL	IV								1	d	В				0	1
Moränenlehm	PS1	21	52			lT	V			1				10YR 4,5/5	3	d	В	2	i R	<1mm	0	1
	PS2	52	110			lT	V			i					3	d	В	2 (i R	<1mm	0	1
Typischer Mull	L	1.00	0.00				!					Fi	lo				T					1
- V1	Ahb	-		1	w	uL		1	Gr	İ			İ				T				0	2
carbonatfreier	Ba	14	33	2	g	uL	l	1		1					1	d	В	1 (i R		0	2
Haftnässe-Pseudogley	P	33	47	2		uL	•	1		İ					3	d	В	1 (i R		0	1
	B1	47	78		?		•	2	Gr	1	St						ı				0	1
	B2	78	113+			lT	•	2	Gr	1	St						ı				0	1
-Buchenwälder und Lehm-Ficht	en-Tannen	-Buchenwä	lder				•			•			•		•		•					
							į			1		Fi	lo				Ţ					0
							į						:				į					0
				1	w		į						:				į				0	3
Haftnässe-Pseudogley	Ahb	i 0	17			lT	V			i							T				0	2
2 ,	PS	17	39			lT	V								2	d	В	2	i R		0	1
		39					V			İ						d						1
	BC	54	95+			L	IV	4	Gr												4	1
Mullartiger Moder			1	t	t	t	i			1		Fi Gr	lo				T					0
		-					İ					11,01					į					4
							İ										į					4
Haftnässe-Pseudoglev			<u> </u>	1	σ	nΙ	IV			1			NO.				÷				0	4
		:											:				į					3
(actgranate pseudovergicyt)	Ba	8	31	2	g	tL	V						:		2	d	Н				0	3
	PS	31	95	1	?	tL	V			İ					2		R	3 4	i B	<1mm	0	2
	carbonatfreie Braunerde Typischer Moder skelettreiche carbonatfreie Braunerde Typischer Moder skelettreiche carbonatfreie Braunerde en-Tannenwald Typischer Mull Haftnässe-Pseudogley aus carbonatfreiem Moränenlehm Typischer Mull carbonatfreier Haftnässe-Pseudogley Haftnässe-Pseudogley Mullartiger Moder Haftnässe-Pseudogley Mullartiger Moder Haftnässe-Pseudogley (tiefgründig pseudovergleyt)	Mullartiger Moder Lv Fzm Hzm Ahb Carbonatfreie Ba Braunerde B Bg Lv Typischer Moder Fzm Hzm skelettreiche carbonatfreie Braunerde BC CENTAINENWAID Typischer Mull Cv Fzm Haftnässe-Pseudogley Ahb aus carbonatfreiem Ba,gd Moränenlehm PS1 PS2 Typischer Mull L Carbonatfreier Ba Haftnässe-Pseudogley Ahb Ba,gd Moränenlehm PS1 PS2 Typischer Mull L Carbonatfreier Ba Haftnässe-Pseudogley P B1 B2 P-Buchenwälder und Lehm-Fichten-Tannen Mullartiger Moder Lv Fzm Hzm Haftnässe-Pseudogley Ahb PS Ba BC Mullartiger Moder Lv Frmz Hzm Haftnässe-Pseudogley Ahb PS Ba BC Mullartiger Moder Lv Frmz Hzm Haftnässe-Pseudogley Ahb PS Ba BC	Mullartiger Moder Lv Fzm 1.00	Mullartiger Moder	Mullartiger Moder Lv Fzm 1.00 0.50 0.50 0.50 0.00 Fzm 1.00 0.50 0.00 0.50 0.00 Ahb 0 7 1 20 2 20 2 Braunerde B 20 90 2 2 Braunerde B 20 90 2 2 Bg 90 100+ 100+ 2 Typischer Moder Lv 3.50 2.75 2.00 0.00 2.75 2.00 0.00 skelettreiche Ahb 0 6 1 0.00 0.00 6 1 0.00 0.00 1 skelettreiche AB 6 26 26 80+ 80+ 26 26 80+ 26 20 20 20 20 20 20 20	Mullartiger Moder Lv Fzm 1.00 0.50 1.00	Mullartiger Moder	Mullartiger Moder	Mullartiger Moder	Mullartiger Moder	Mullartiger Moder	Mullartiger Moder	Mullartiger Moder	Mullartiger Moder	Mullartiger Moder	Mullarriger Moder	Mullartiger Moder	Mullartiger Moder	Mullariger Moder	Multarriger Moder	Mullartiger Moder	Mullartiger Moder

C83	Typischer Mull	Lv	1.00	0.00	I	I					1		Fi	lo			1		Т		T	0
000	Typischer Wun	Fzm	stw.	0.00									11	lo			į					0
	pseudovergleyter	Ahb	0	7	1	w	lT							10			+		_		0	4
	Kalkbraunlehm	Bgd,a	7	18/23	2	w	lT		1	Gr	•				1	11 B	1	d	R		0	2
	(über Moränenlehm)	BC	18/23	70	3	?	lT		4		1	St			1	u D	1	u	``		1	1
	(uoti monunomin)	(B)C	70	90+		-	sU		5	Gr	1	St									5	1
C30	Typischer Mull	Lv	2.00	1.50					_		1	~-	Bu	lo			\dagger		-			0
C30	Typischer Wun	Fzm	1.50	0.00							i		Du	lo			1					4
		Hzm	stw.	0.00										ko			ļ					4
	Haftnässe-Pseudogley	Ahb	I 0	2	1	g	uL	IV			-			, Ro			+		+		0	3
	Harmasse-i seudogicy	PS	2	15	2	w W	lT	V							3	d B	3	d	R		0	3
		Ba	15	55	3	?	lT	v	1	gGr	2	St,Bl						u			0	3
		BC	I 55	70+		•	uL	IV	2	Gr	4	St,Bl				u 11		u			4	1?
C19	Typischer Moder	Lv	7.25	6.50					_			~-,	Bu,Fi	lo			†		-			0
	-) F 3101	Fmz	6.50	4.00		I							24,11	lo,ve,sch			1					1
		Hmz	4.00	0.00	1	g			1	Bl				kö							0	4
	Haftnässe-Pseudogley	Ahb	0	4/6	1	w	uL	IV	1	Bl				, ac			1		\top		0	3
		PS	4/6	27	2	w	uL	IV	1	Bl					3	d B	2	d	R		0	2
		Ba,g	27	40	1	t	uL	IV	2	Bl	•					u B	- 1				0	2
		C	40+		-	-			5	Bl											5	1
C18	Typischer Moder	Lv	5.00	4.00							1		Bu,Fi	lo			i					0
		Fmz	4.00	2.00									ŕ	sch(,lo)			į					4
		Hmz	2.00	0.00	1	w					•			kö			1				0	4
	carbonatfreier	Agd	0	3/4	1	w	uL	IV							2	u B					0	3
	Typischer Pseudogley	PS	3/4	21	2	w	lT	V			İ					d B	2	d	R		0	2
	über Kalkbraunlehm	S	21	25/30	1	w	lT	V			İ							d	R ·	<2mm	0	1?
		Bg	25/30	100+			lT	V							2	u R				<1mm	0	1?
C46	Typischer Mull	Lv	0.75(0)	0.25(0)							1		Bu,Kr	lo			1					0
		Fz	0.25(0)	0.00									-	lo			-					0
	Kalkbraunlehm	Ahb	0	20	2	g	uL	IV	1	St,Bl							i				0	4
	über Fels(Blöcken)	AB	20	29	2	g	uL	IV	3	St,Bl	•						1				0	3
		B(C)	29	105+			lT	V	4	St,Bl	•						-				2	2-1
C80	Typischer Mull	L	1.00	0.00									Fi,BAh	lo			1					1
		Fzm	stw.				li							lo			1					1
		Ahb	0	7	1	g	uL										1				0	3
	Kalkbraunlehm	7	7	23	4	g	uL		1	St,Bl							1				0	3
	über Blöcken	Ba	23	50	3	?	uL		4		1	Gr					1				0	2
		В	50	105+			lT		4	St,Bl	1	Gr									4	1
C76	Typischer Mull	L	2.00	1.00									Fi	lo			I					0
		Fzm	1.00	0.00										lo								2
		Ahb	0	10	2	g	uL		1	Gr							1		\top		0	2
	pseudovergleyter	AB	10	21	2	g	uL		1	Gr							1				0	2
	Kalkbraunlehm	Ba	21	50	3	g	lT		1	Gr	1	St			1	d R					0	1
		Bgd	50	105+		ľ	lT		1	Gr	3	St		•	2	u B	2	d	R		3	1

C71	Typischer Mull	τ	2.00	0.75	Т	Г	1		I		:		Day (DAIs)	lo	ı		!	1		0
C/I	1 ypischer Muli	Lv Fzm	0.75	0.75 0.00				1					Bu(,BAh)	lo			į			1
	skelettreicher Kalkbraunlehm	Ahb	0.73	1/3	1	w	uL	IV			1			10			<u>;</u>		0	3
	über Fels(Blöcken)	Ba	1/3	37	3		uL	IV	1	сCr.	2	St(Bl)					!		4	3
	uber Feis(Biocken)	ВС ВС	37	60+	3	g	IT	V	1	gGr gGr	4	St,Bl					!		4	1
CCA	Typischer Mull	Lv	1.0(0)	0.25(0)	1	1	11	· ·	1	gui	4	ы,ы	Bu	lo					4	
C04	1 ypischer Muli		-					Ì					Bu				İ			0
	Kalkrotlehm	Fzo Ahb	0.25(0)	0.00	1		т	IV			1 1	St,Bl		lo St,Bl			<u> </u>		_	3
	über Fels(Blöcken)	Anb B1aCn	I 8	8 35	2 2	g	uL IT	V	1	~C=	1 4	St,Bl	~C=	St,Bl St,Bl	5YR 3/3		!		2	
	uber Feis(Biocken)	B2aCn	35	60+	2	g	lT	V	1	gGr gGr	4	St,Bl	gGr gGr	St,Bl	5 1 R 3/3 5 YR 3/2		•		2 2	2 2
C - 1-1-	1 - 3	B2aCII	33	00+		J	11	٧	1	gGr	4	St,DI	gGr	St,DI	31K 3/2				2	2
	chtwald	1			_	_	1		1					•	1	•		1		
C23	Rohhumusartiger Moder	Lv	22.75	21.50				į					Bu,BAh,Fi	lo			į			0
		Fmz	21.50	19.00				1						lo,ve,sch			į			2
		Hzm	19.00	0.00	1	g	-	<u> </u>	1	St,Bl	1			kö			<u> </u>		0	4
	Kalklehm-Rendzina	Ahb	0	7	2	g		IV	3	Gr	3	St,Bl					<u> </u>		2	2
	über Kalkfels(Blöcken)	BC	7	31+			lT	V	2	Gr	4-5	St,Bl					<u> </u>		4	1
C24	Rohhumusartiger Moder	Lv	13(12)	12.5(12)				ŀ					Bu,BAh	lo			! !			0
		Fzm	12.5(12)	12.00				-						lo			!			1
		HzmC	12.00	0.00	2	g		<u> </u>	3	Gr	2	St,Bl		ko			!		4	4
	Moder-Rendzina aus Geröll	AC	0	80+			uL	IV	4	Gr	3	St,Bl					!		4	3
	pine Kalk-Fichtenwälder																			
	Typischer Mull (bis Rohhumus)	Lv	0.5(0)	0.00				<u> </u>					Fi	lo			i			0
	Haftnässe-Pseudogley	Ahb	0	14	2	g	uL	IV									!		0	3
	zwischen Blöcken	P	13	24	2	g	uL	IV								3 d B	2 d R		0	2
		BaC	24	47+			uL	IV	1	gGr	4	St,Bl					į		2	2
C48	Rohhumusartiger Moder	Lv	12.00	11.50				1					Fi	lo						1
		Fzm	11.50	11.00				1						lo						1
		Hzm	11.00	0.00	2	g			3	St,Bl				kö					0	4
	Kalklehm-Rendzina	AC	0	14	1	?	uL	IV	5	St,Bl									0	3
	über anstehendem Fels	BC	14	24+			uL	IV	5	St,Bl					5YR 4/4		ł		2	2
C49	Rohhumusartiger Moder	Lv	25.75	24.50									Fi	lo			<u>!</u>			0
	-	Fzm	24.50	24.00										lo,ve			!			1
		Hzm	24.00	0.00	3	g		•			2	St,Bl		kö					0	4
	Kalklehm-Rendzina	Ahb	0	12	1	w	uL	IV			4	St,Bl							2	3
	über anstehendem Fels	(B)C	12	17+			uL	IV	1	Gr	5	St,Bl			5YR 4/5				2	1
C40	Rohhumusartiger Moder	Lv	12.00	11.00				1					Fi	lo						0
	-	Fmz	11.00	8.00				İ						lo,bre			İ			4
		H1mz	8.00	6.00		1		İ						ko			İ			4
		H2zm	6.00	0.00	2	g		İ			1	St,Bl		kö			İ		0	4
	Moder-Rendzina	HC	0	10	1	g	uL	IV	3	Gr	4	St,Bl					İ		2	4
		Cv	10	33+		1			4	Gr	4	St,Bl					}		5	1-2
C51	Typischer Mull	Lv	0.75	0.00	1		1	1					Fi	lo						1
	• •				1 ~	t	uL	IV	1		1						!		0	3
	skelettreicher,	Ahb	0	6/13	2	ι	uL	1 V			•			:					0	
	skelettreicher, hangpseudovergleyter	Ahb Ba,gd	6/13	6/13	2 2	w		IV	1	gKi	1	Sch				2 d B	1 d R		0	3

C63	Typischer Mull	Lv	0.25(0)	0.00				•					Fi	lo				i					0	\Box
	Schwemmboden	Ahb	9	10	2	g	uL?	į	1	Ki	1	Sch									2	2	4	j
	über Kalkrotlehm	Ca	10	19	1	g	uS	I	4	Ki	3	St,Bl						İ			5	5	2	j
		Arel	19	32	2	g	sL	Ш			4	St,Bl			7,5YR 3/2			İ			2	2	2	
		Brel	32	38+			L	IV			4	St,Bl			5YR 4/4						4	1	1	
C84	Typischer Mull	Lv	0.50	0.00				į					Fi,Kr	lo				Ī					0	
	carbonatfreier	Ahb	0	6	1	g	uL														()	3	\neg
	Kalkbraunlehm	В	6	14	2	w	uL	į							5YR 4/4						()	2	- 1
		Ba	14	100+			uL	į	1	Gr	İ					2	d F	I		j	()	2	,
C50	Typischer Mull	Lv	0.75(0)	0.25(0)				į			1		Fi	lo									0	
		Fzm	0.25(0)	0.00				į						lo				į					0	
	Carbonatfreier	Ahb	0	11	1	w	lT	V								3	d F	I I			()	2	\neg
	Haftnässe-Pseudogley	PS	11	28	2	g	lT	V			İ					4	d E	2	d R	2	()	1	- 1
		Ba,gd	28	100+			lT	V			i							1	d R	2	()	1	,
Bode	ensaure Fichtenwälder																							_
C39	Rohhumusartiger Moder	Lv	7.75	7.00				!					Fi	lo				į					0	\neg
		Fzm	7.00	6.00				į						lo				İ					0	,
		Hzm	6.00	0.00	1	g		ļ						ko	7,5YR2/1			1			()	3	- 1
	Haftnässe-Pseudogley	AP	0	7/13	2	w	uL	IV	1	Schi	1				10YR 4/2	5	d E	1	d R	2	()	1	\neg
	über	Ba	7/13	37	2	g	lT	V	1	Schi	İ					2	d F	I			()	2	- 1
	Typischem Pseudogley	P	37	44	2	g	lT	V	1	Schi	İ					3	d E	1	d R	2	()	1	,
	über Kalkbraunlehm	S	44	60	1	?	lT	V	1	Schi						5	d E	2	d R	2	()	?	- 1
		Bg	60	93+			lT	V	1	Schi							u R	1			()	?	- 1
C62	Typischer Mull (bis Moder)	Lv	1.75	0.75				•					Fi	lo				1					0	\neg
	,	Fzm	0.75	0.00				!			i			lo				1					3	,
	Haftnässe-Pseudogley	Agd	0	7/10	1	w	uL	IV			Ī					5	d E	3			()	2	\neg
		P	7/10	17/22	1	w	uL	IV	(1	Gr)	İ					5	d E	1	d R	₹ j	()	1	- 1
		Bgd	17/22	35	3	g	uL	IV	(1	Gr)						2	d R	.		j	()	1	- 1
		Ba	35	100+			uL	IV	(1	Gr)										j	()	1	- 1
C55	Typischer Mull	Lv	1.75	1.25									Fi,To	lo									1	\neg
		Fzm	1.25	0.00				į						lo									4	- 1
	Hang-Pseudogley über	Ahb	0	12	2	g	L	IV	1	Gr								1	d R	2	()	3	j
	Carbonatfreier Braunerde	P	12	22	1	g	uL	IV	2	Gr	į					3	d E	3 4	d R	2	()	2	
		S	22	32/36	1	w	uL	IV	3	Gr						5	d E	1	d R	2	(1	- 1
		Bgd	32/36	95+			uL	IV	3	Gr								2	d R	2	()	1	- 1
C56	Torfmoos-Humus	Fg	5.00	2.00	1		1	1			1		To(,Fi)	lo				1		1		T	4	\dashv
		Hmz,g	2.00	0.00					I				,	lo				-					5	-
	podsolierter Haftnässe-	Ahb	0	4	1	g	L?				1			•				İ			()	4	j
	Pseudogley über	EP	4	15	2	g	L	IV	3	Sa						5	d E	1	d R	2	()	3	
	carbonatfreier Braunerde	Bh,gd	15	35	2	g	sL	III	2	Sa						1	d E	3 2	d R	2	()	3	1
		Bgd	35	55+		l	sL	Ш	2	Sa	1							2	d R				1	- 1

C57	Sphagnum-Torf	T	0	20	3	g		:			1			ko			i				0	4
		Ag	20	28	1	g	uL	IV							2	u B					0	4
	Typischer Pseudogley	P	28	40	2	g	L	IV	1	Gr					5	d B	2	d R	2		0	1
	über carbonatfreier Braunerde	S	40	56	1	?	1S	II	1	Gr	3	Sa			5	d B	2	d R	2		0	1
		Bv	56	86+			sL	III	2	Gr							į				0	1?
Lärc	hen- und Lärchen-Zirbenwälder																					
C52	Pech-Rendzina	Lv	1.00	0.00				i			-		Lä,Zi,Fi	lo			į					0
		HzmC	0	5/14	1	w			4	Bl				kö			ļ				4	4
	Pech-Rendzina	C(a)	5/14+					! !	5	Bl							į				\Box	
C60	Typischer Mull	Lv	1.00	0.50									Gr,Lä	lo			ij					0
	(auch Moder/Rohhumus)	Fzm	0.50	0.00										lo			į					2
	Kalkbraunlehm	Ahb	0	4	1	g	uL	IV									1				0	4
	über Fels(Blöcken)	AB	4	9	2	g	uL	IV									İ					4
	(auch Pech-Rendzina)	Ba,gdCn	9	60+			lT	V	4	Bl					1	d B	1	d R	2		0	3
C61	Typischer Mull	Lv	0.50	0.00									Kr	lo								0
	(auch Moder/Rohhumus)	Fzm	stw.					i						lo			į					0
	pseudovergleyter	Ahb	0	4	1	g	uL	IV									į				0	4
		AB	4	10	3	g	uL	IV									į				0	4
	über Fels(Blöcken)	Ba,gdCn	10	30+	1	w	uL	IV	4	Bl					1	d B	2	d R	l 1n	nm	0	3
C28	Pech-Rendzina	Lv	(4)2.5(0)	(3)1.5(0)									Zi,Lä	lo,ve								1
		Fmz	(3)1.5(0)	0.00										ve			İ					2
	Pech-Rendzina	HzmC	0	63+					2-5	Bl				kö			į				0 4	4-2
C25	Typischer Moder	Lv	7.00	5.50									Zi,Lä	lo,ve			i					1
		Fmz	5.50	2.50										lo,ve			ļ					4
		Hmz	2.50	0.00										ko								4
	Moder-Rendzina	Ahb	0	18/22	2	w	uL	IV	1	Gr	3	St,Bl					1					4
		C	18/22	50+					4	Gr	4	St,Bl					<u>i</u>				4	?
C26	Rohhumusartiger Moder	Lv	20.00	19.50				:					Kr,Zi,Fi	lo			i					0
		Fmz	19.50	18.00				l						ve(,lo)								4
		Hzm	18.00	0.00	1	g			1	gGr	1	St		kö								4
	skelettreicher Kalkbraunlehm	Ahb	0	13	2	g	uL	IV	1	mgGr	2	St,Bl					į				2	2
		BC	13	35+			lS	II	2	Gr	4	St,Bl									4	1
C27	Rohhumusartiger Moder	Lv	7.00	6.50									Kr,Zi,Fi	lo								0
		Fzm	6.50	5.00		I		İ						lo			į					5
		Hzm	5.00	0.00	2	g		<u> </u>						kö			<u>i</u>					4
	skelettreicher Kalkbraunlehm	Ahb	5	29	2	g	lT	V			2	St,Bl										3
	über Fels(Blöcken)	AB	29	44	1	g	lT	V	1	Gr	3	St,Bl					Ĭ					3
		BC	44	95+			tS	II	1	Gr	4	St,Bl									4	1

5. Übersicht über die Ausgangssubstrate der aufgenommenen Bodenprofile

Auböden und Schwemmböden

- C22 alluviale Enns-Sande
- C06 alluviale Enns-Sande
- C02 alluviale Enns-Schotter, -Kiese
- C34 alluviale Enns-Sande
- C03 alluviale Enns-Sande (Grus)
- C44 alluviale Enns-Lehme-Sande-Kies
- C59 alluviale Enns-Sande
- C01 alluviale Enns-Sande
- C47 alluviale Flussschotter und -kiese (großteils kalkfrei)

Anmoor

C75 Moräne: Lehm mit dolomitischem Grus

Magerstandorte

- C35 Moräne: Kalkblöcke
- C11 Hangschutt: kalkiger Grus (Steine)
- C68 Hangschutt: kalkiger sowie dolomitischer Grus, Steine
- C14 Hangschutt: dolomitischer Grus (Steine)
- C17 Hangschutt: dolomitischer Grus und Steine
- C38 Hangschutt: dolomitischer Grus, Steine und Blöcke
- C67 Ramsaudolomit: anstehender Fels
- C42 Ramsaudolomit: anstehender Fels
- C53 Hangschutt: dolomitischer (slt. kalkiger) Grus (Steine)
- C86 Ramsaudolomit, dolomitischer Grus, Steine
- C82 Hangschutt: dolomitischer Grus (Steine)
- C78 Hangschutt: dolomitischer Grus (Steine)
- C73 Hangschutt: dolomitischer Grus (Steine, Blöcke)
- C72 Hangschutt: dolomitischer und kalkiger Grus (Steine)
- C81 Hangschutt: dolomitischer Grus
- C36 Hangschutt: dolomitischer Grus (und Steine)
- C77 Hangschutt: dolomitischer Grus
- C33 Hangschutt: dolomitischer Grus (Steine)
- C31 Hangschutt: dolomitischer Grus (Steine)
- C37 Ramsaudolomit: anstehender Fels (mit Kalkbändern)
- C07 Ramsaudolomit: anstehender Fels
- C85 Wettersteinkalk: anstehender Fels (Steine, Blöcke)
- C88 Ramsaudolomit: anstehender Fels

Kalkhang-Buchen- und Kalkhang-Fichten-Tannen-Buchenwälder

- C58 Hangschutt: kalkiger (-dolomitischer) Grus, Steine und Blöcke
- C65 Hangschutt: Grus, Steine; kalkig, dolomitisch, kalkfrei
- C66 Hangschutt: dolomitischer Grus (Steine)
- C54 Dachsteinkalk (Steine, anstehender Fels)
- C69 Glestschermoräne: kalkige Blöcke, Steine (Grus), Lehm
- C45 Dachsteinkalk (anstehender Fels, Steine, Grus)
- C04 Hangschutt: dolomitische Steine und Grus
- C43 Hangschutt: dolomitische Steine und Grus
- C05 Hangschutt: Grus und Steine (, Blöcke)
- C21 Ramsaudolomit: anstehender Fels
- C13 Hangschutt: dolomitischer Grus und Steine
- C10 Hangschutt: kalkiger Grus und Steine
- C70 Raibler Schichten (Schiefer, Sandstein)
- C08 Hangschutt: dolomitischer Grus und Steine
- C12 Hangschutt: dolomitischer Grus und Steine
- C16 Dachsteinkalk-Hangschutt: Grus, Steine, Blöcke
- C09 Hangschutt: dolomitische Steine und Grus
 C41 Dachsteinkalk: Steine, Blöcke, Fels

Silikatische Enns-Schotter

- C79 Eiszeitliche Enns-Terrassenreste: silikatischer Kies (Schotter, Blöcke)
- C87 Eiszeitliche Enns-Deckenschotter: silikatischer Kies (Schotter)

Fichten-Tannenwald

- C15 Moräne (kalkfreier Lehm)
- C74 Rauhwackenbreccie (kalkfreier Lehm, silikatischer Grus und Steine)

Lehm-Buchenwälder und Lehm-Fichten-Tannen-Buchenwälder

- C32 Moräne (Lehm, Kalk- u. Dolomitgrus)
- C20 Moräne (Lehm, Dolomitgrus)
- C83 Moräne (Lehm, Kalk- u. Dolomitgrus)
- C30 Dachsteinkalk (Blöcke, Steine, Grus)
- C19 kalkfreie Lehmdecke über anstehendem Dachsteinkalk-Plateau
- C18 kalkfreie Lehmdecke über anstehendem Dachsteinkalk-Plateau
- C46 Moräne (Lehm, kalkige Steine, Blöcke)
- C80 Werfener Schichten (Skelett v.a. Kalk, Lehm teils kalkhältig)
- C76 Moräne (Lehm, grusig-steiniger Mergel)
- C71 Moräne (kalkige Steine, Blöcke, Grus)
- C64 Lias-Krinoidenkalke nach Ampferer 1935 (stark eisenhältig, Lehm, Steine, Blöcke)

Schluchtwald

- C23 Hangschutt: kalkige Steine, Blöcke, Grus
- C24 Hangschutt: kalkiger Grus, Steine und Blöcke

Subalpine Kalk-Fichtenwälder

- C29 Moräne (Lehm, Blöcke, kalkiges aber auch kalkfreies Gestein)
- C48 Dachsteinkalk (Blöcke, Schotter)
- C49 Dachsteinkalk (Blöcke, Steine, Grus)
- C40 Hangschutt: kalkiger Grus, Steine und Blöcke
- C51 Dachsteinkalk (kalkiger Grus, Steine, Blöcke, Kies)
- C63 kalkiger Bachschutt über Lias-Krinoidenkalken nach Ampferer 1935
- C84 Jura-Fleckenmergel nach Ampferer 1935 (kalkfreier Lehm)
- C50 Lias-Krinoidenkalke nach Ampferer 1935 (kalkfreier Lehm)

Bodensaure Fichtenwälder

- C39 Lias-Krinoidenkalke nach Ampferer 1935 (kalkfreier Lehm, grusige Schieferstücke)
- C62 Oberjurahornsteinkalke nach Ampferer 1935 (kalkfreier Lehm)
- C55 Werfener Schichten (kalkfreier Lehm und Grus)
- C56 Grauwackenzone (saurer Sandstein, Lehm)
- C57 Grauwackenzone (saurer Sandstein, Lehm)

Lärchen- und Lärchen-Zirbenwälder

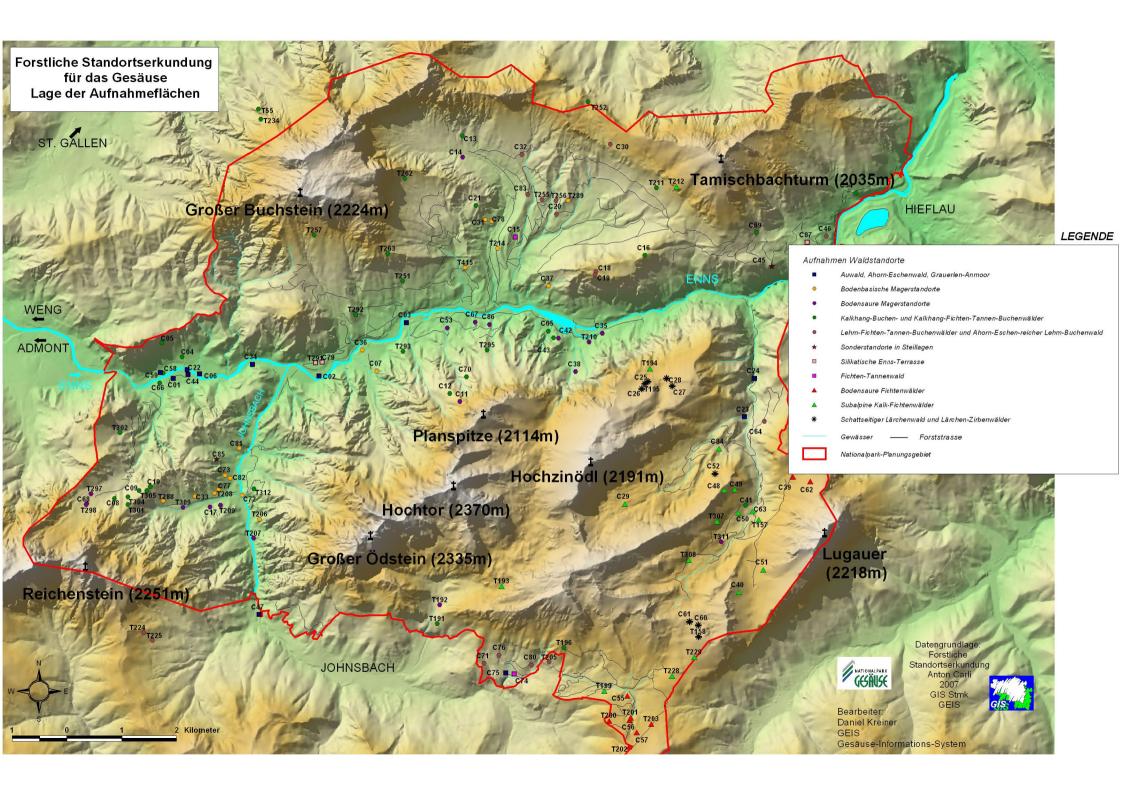
- C52 Dachsteinkalk (anstehender Fels)
- C60 Dachsteinkalk (anstehender Fels, Lehm)
- C61 Dachsteinkalk (anstehender Fels, Lehm)
- C28 Dachsteinkalk (anstehender Fels)
- C25 Dachsteinkalk (anstehender Fels, Grus, Steine)
- C26 Dachsteinkalk (anstehender Fels, Grus, Steine, Blöcke)
- C27 Dachsteinkalk (Blöcke, Steine, Grus, anstehender Fels)

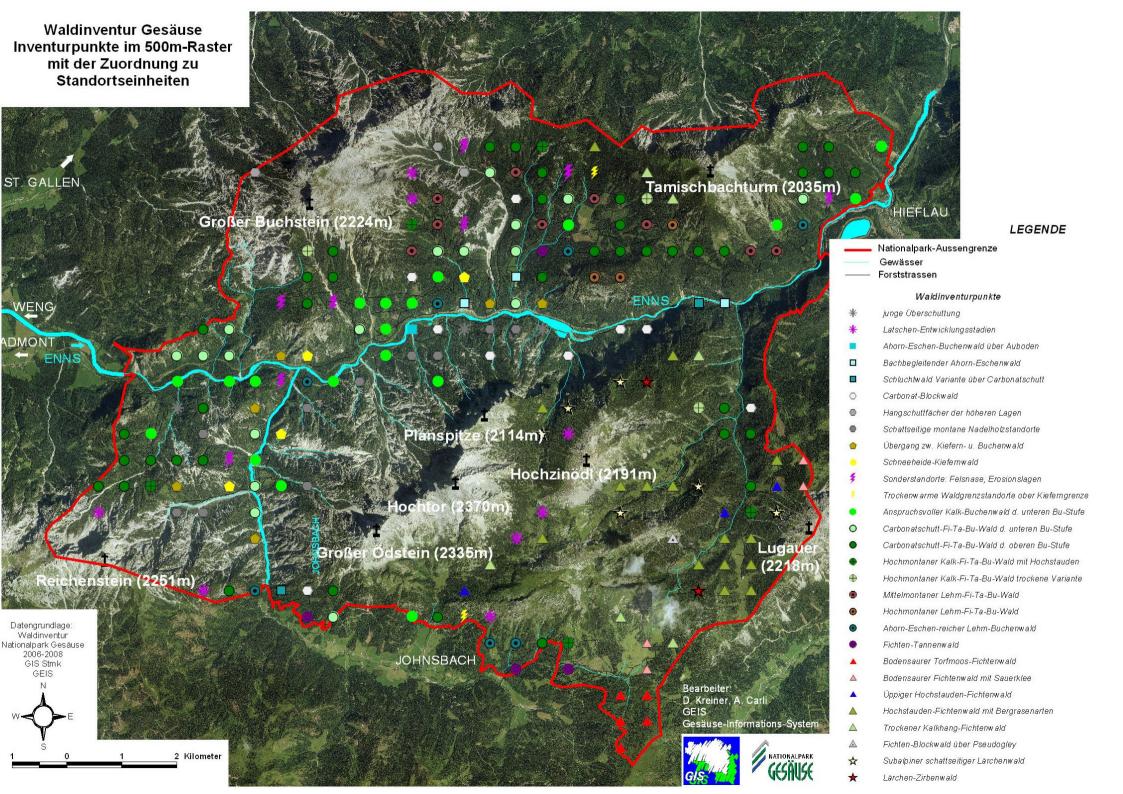
Bestimmungsschlüssel für die forstlichen Standortstypen im Gesäuse:

r Silberweiderlau (filt Laveriderweide) oder Graderlerlau über Sandigen oder Riesig-schöttigen Plusssedimenten, neben den Baumarten differenziert <i>Phalaris arundinacea</i>
2 Grauerlenau über Grobsubstrat(Kies, Schotter)-Schwemmböden Sandige Alluvionen
3 Baumschicht wird von Silber- und Lavendelweide gebildet Baumschicht wird von Grauerle gebildet. Silberweidenau (mit Lavendelweide) 1.11 Grauerlenau über sandigen Sedimenten 1.12
4 Auböden über Enns-Sedimenten außerhalb der Auzone (fast immer verbraunt)
5 Hinsichtlich Feuchte und/oder Stickstoff sehr anspruchsvolle Arten sind vorhanden (z.B. <i>Filipendula ulmaria, Stachys sylvatica, Carduus personata</i>). Ahorn-Eschenwald über Auboden typische Variante 2.11 - Bei durchgehend sandigen Sedimenten in flussferneren, nicht muldigen Lagen. Auftreten von Arten der zonalen Kalk-Buchenwälder (z.B. <i>Cephalanthera spp., Carex flacca, Convallaria majalis, Veronica urticifolia</i>). Ev. intensive Buchenverjüngung. Ahorn-Eschen-Buchenwald über Auboden 2.12
6 Ahorn-Eschenwald über Grobsubstrat-Bach- oder Flusssedimenten (Kies, Schotter). Gegenüber den zonalen Buchenwaldtypen differenziert positiv die Gruppe der besonders anspruchsvollen Arten wie Stellaria nemorum, Circaea lutetiana, Aegopodium podagraria. - Anderer Standortstyp
7 Schluchtwald-Typ (besonders kühlfeuchtes Lokalklima). Bergahorn, Esche und Bergulme dominieren die Baumschicht. Ausschließlich im Hartelsgraben anzutreffende Differenzialart: Asplenium scolopendrium. Zusätzlich anspruchsvolle Arten der Ahorn-Eschenwälder (z.B. Impatiens noli-tangere, Actaea spicata, Lunaria rediviva u.a.)
8 Schluchtwaldausbildung über (meist wenig konsolidiertem) Geröll, typischerweise unter einer Felswand. Schluchtwald Variante über Carbonatschutt 2.32 - Schluchtwaldausbildung bei konsolidierten, feinerdereicheren aber dennoch durchsickerten Verhältnissen. Schluchtwald Variante feinerdereicher Boden 2.31
9 Anmoor (mächtiger hydromorpher A-Horizont mit tintigem Geruch) mit Grauerlen-Hangwald. In der Krautschicht dominiert <i>Petasites hybridus</i> . Grauerlenwald über Anmoor 3.1 Anderer Standortstyp
10 Halden carbonatischer Blöcke mit geringen oder fehlenden Feinbodenanteilen. Blockzwischenräume daher mit rein humosem Bestandesabfall in fortgeschrittenem Zersetzungsstadium verfüllt. Zu den zonalen Buchenwäldern differenzieren die Liane <i>Lonicera alpigena</i> , das Moos <i>Neckera crispa</i> (typisch für beschattetes Gestein), Rohhumus- und Magerzeiger: u.a. <i>Vaccinium vitis-idaea</i> , <i>Erica carnea</i> . Die Fichte hat einen Konkurrenzvorteil, aber auch Buche kann den Standortstyp besiedeln. Carbonat-Blockwald 4.1 - Anderer Standortstyp
11 Schattseitige Hangschuttfächer der höheren Lagen. Lärchenreiche oder -dominierte Bestände als erste Wald- Entwicklungsstadien. (Kontakt mit Latschenbeständen, aus denen sich der Waldtyp entwickelt.) Nur im Hinterwinkl Ausbildung mit monodominanter Buche. Zu den zonalen Buchenwäldern der Höhenstufe differenzieren Rhododendron hirsutum, Erica carnea, Vaccinium vitis-idaea, Rubus saxatilis, Mehlbeere in der Baumschicht
, made of Gallactic Jp
12 Hangschuttfächer in hochmontaner Lage. Immer mit Lärchenanteil. Höhenzeiger: Euphorbia austriaca, Adenostyles alliariae, Carex ferruginea. Hangschuttfächer der höheren Lagen hochmontane Lärchen-Variante 4.21 - Obengenannte Höhenzeiger fallen aus. Buche dominiert trotz roher Hangschutt-Rendzina. Keine Lärche.

13 Schattseitige Nadelholz-Magerstandorte (felsig-steile Bereiche über Ramsaudolomit oder unverwitterte Hangschuttfächer) mittel- und tiefmontaner Lagen. Beeinträchtigter Humusabbau infolge der Nährstoffarmut in Kombination mit schattiger Lage begünstigt Rohhumusarten. Zu den zonalen Buchenwäldern differenziert hohe Stetigkeit in folgender Gruppe der Magerzeiger: Erica carnea, Rubus saxatilis, Sesleria albicans, Polygala chamaebuxus, Melampyrum sylvaticum, Rhytidiadelphus triquetrus, Hylocomium splendens, Pleurozium schreberi, Vaccinium vitis-idaea. Zusätzlich gegenüber den bodenbasischen Magerstandorten differenzieren: Rhododendron hirsutum, Pinus mugo, Bazzania trilobata, Calluna vulgaris (slt.), Sphagnum spp. (slt.), Homogyne alpina, (Lycopodium annotinum)
14 Typische Variante mit Bewimpertem Almrausch und Latsche. Buche fällt weitgehend aus. Schattseitige montane Nadelholzstandorte typische Variante 4.31
 Bewimperter Almrausch und Latsche fehlen. Rohhumus- und Magerzeiger aus Pkt. 13 bleiben erhalten. In naturnaher Ausbildung mit Buchenanteilen. Schattseitige montane Nadelholzstandorte zum Buchenwald vermittelnde Variante 4.32
15 Bodenbasische (Kiefern-Fichten-)Magerstandorte (Steilhänge, Hangschuttfächer, Degradationsstadien). Folgende Mager- und/oder Trockenzeiger differenzieren von den zonalen Buchenwaldstandorten: Anthericum ramosum, Potentilla erecta, Galium lucidum, Pinus sylvestris. Weiters differenziert hohe Stetigkeit in folgender Gruppe: Erica carnea, Rubus saxatilis, Sesleria albicans, Polygala chamaebuxus, Melampyrum sylvaticum, Rhytidiadelphus triquetrus, Hylocomium splendens, Pleurozium schreberi, Vaccinium vitis-idaea
16 Schneeheide-Kiefernwaldstandorte. Böden immer Rendzinen in warmtrockenen Lagen. Differenzierende Artenkombination: Thymus praecox, Phyteuma orbiculare, Vincetoxicum hirundinaria, Carex humilis, Biscutella laevigata, Rhinanthus glacialis
- Übergangstypus: vermitelt zu zonalen Buchenwäldern. Böden: Kalkbraunlehme, Kalklehm-Rendzinen oder Rendzinen in frischerer Lage. Gegen Schneeheide-Kiefernwald differenzierende Arten: Gentiana asclepiadea, Hepatica nobilis, Senecio ovatus, Plagiomnium affine, Euphorbia cyparissias, Paris quadrifolia, Maianthemum bifolium, Eupatorium cannabinum, Adenostyles glabra, Oxalis acetosella, Ajuga reptans
17 Über anstehendem Fels. Differenzialarten <i>Carex humilis, Leontodon incanus</i> . Schneeheide-Kiefernwald über anstehendem Fels 5.22
- Über Hangschutt. Differenzialarten <i>Solidago virgaurea</i> , <i>Prenanthes purpurea</i> . Schneeheide-Kiefernwald über Hangschutt 5.21
18 Degradationsflächen. I.d.R. über skelettreichen Braunlehmen in Sonnlagen. Kennarten: Campanula trachelium, Eupatorium cannabinum, Gentiana asclepiadea, Carex flacca, Euphorbia cyparissias, Origanum vulgare, Pteridium aquilinum, tw. Sanicula europaea.
Übergang zw. Kiefern- und Buchenwald Degradationsvariante 5.11 - Über Rendzinen. Typisch in etwas frischerer Lage. Primär- oder Sekundärentwicklung zu zonalem Kalk-Fi-Ta-Buchenwald. Übergang zw. Kiefern- und Buchenwald Sukzessionsvariante 5.12
19 Sonderstandort: Felsnasen oder extreme Rückenstandorte mit mächtiger Rohhumusschicht bei weitestgehendem Fehlen von mineralischem Feinboden (Fels-Auflagehumusböden). Buche fällt aus. Kiefer, Lärche, Fichte in Baumschicht. Rohhumusarten und Magerzeiger: <i>Erica carnea, Homogyne alpina, Sesleria albicans, Senecio abrotanifolius</i> , (<i>Achillea clavenae</i>). Felsnase mit Fels-Auflagehumusboden 6.1 - Anderer Standortstyp
20 Sonderstandort: Steilhänge (über 45° Neigung) über Dachsteinkalk. Lehmanteile in den Gesteinsklüften ermöglichen dennoch Buchenvorkommen. Nadelholzanteil nimmt mit Steilheit zu. Artengarnitur ähnlich trockenen Buchenwaldstandorten. Steilhang über Dachsteinkalk mit Lehmanteilen 6.2 - Anderer Standortstyp
21 Sonderstandort: Feinschuttreiche, steile Hangabschnitte mit fortwährender Oberflächenerosion. Daher keine Weiterentwicklung zu einer zonalen Waldgesellschaft. Erosionslagen 6.3 - Anderer Standortstyp
22 Reste eiszeitlicher Enns-Terrassen (Enns-Konglomerate nach geologischer Karte von AMPFERER 1935) mit dominierend silikatischem Aufbau. Verbreitete Arten der Kalkbuchenwälder der Höhenstufe (Tiefmontanstufe) fallen aus (z.B. <i>Hepatica nobilis, Helleborus niger, Euphorbia amygdaloides, Valeriana tripteris</i>).
- Anderer Standortstyp23

23 Fichtenwald, dessen Erscheinungsbild von Hochstauden, insbesondere Adenostyles alliariae (oft hüfthoch), geprägt ist. Ab ca. 1300 m Seehöhe, typisch in Hochtälern mit Kaltluftseebildung. Diagnostische, durchgehend vorhandene Feuchte- und Nährstoffzeiger: Adenostyles alliariae, Saxifraga rotundifolia, Silene dioica, Myosotis scorpioides, Cicerbita alpina, Epilobium montanum, Stellaria nemorum, Ranunculus lanuginosus, Dryopteris filixmas
- Anderer Waldtyp25
24 Mächtige Lehme, i.d.R. mit Tagwasserstau. <i>Thelypteris limbosperma, Caltha palustris</i> treten auf. Üppiger Hochstauden-Fichtenwald wasserstauende Variante 12.11 - Wasserzügige, carbonatschuttreichere Böden (z.B. Schwemmboden). Ohne die obengenannten Arten.
Üppiger Hochstauden-Fichtenwald wasserzügige Variante 12.12
25 Besonders gut nährstoff- und wasserversorgte montane Hänge mit Lehmlage im Oberboden. Bodentyp Kalkbraunlehm (slt. Kalkrotlehm). Oft über Grundmoränen. Ahorn-Eschen-reiche Standorte, gefördert auch durch Steilheit. Differenzierende Arten zu den zonalen Kalk-Buchenwaldtypen: Impatiens noli-tangere, Stachys sylvatica, Stellaria nemorum, Pulmonaria officinalis Galeopsis speciosa. Negativ gegen die zonalen Kalk-Buchenwaldtypen differenzieren: Euphorbia amygdaloides, Vaccinium myrtillus, Dicranum scoparium, Polytrichum formosum, Adenostyles glabra, Gymnocarpium robertianum. Diff. Arten zum Hochstauden-Fichtenwald: Salvia glutinosa, Sanicula europaea, Impatiens noli-tangere, Esche, Buche
26 Tiefmontane Lage, daher Auftreten von Tieflagenarten wie Carex alba, Polygonatum multiflorum. Ahorn-Eschen-reicher Lehm-Buchenwald tiefmontane Variante 8.31 - Höhere Lage. Differenzierende Hochlagen-Arten z.B. Viola biflora, Veratrum album.
Ahorn-Eschen-reicher Lehm-Buchenwald mittelmontane Variante 8.32
27 Kalkeinfluss standortsprägend. Meist lockere Böden (Rendzinen, skelettreiche Kalkbraunlehme). Lehmlagen möglich, jedoch ohne Wasserstau. Daher keine Bleich- oder Rostfleckung. Kennart: <i>Valeriana tripteris</i> . Die Moose <i>Fissidens sp., Tortella tortuosa</i> hochstet, auf Felsblöcken, oberflächlich liegendem Carbonatschutt aber auch über dem mit Carbonatgrus angereicherten Waldboden. Zusätzlich differenzierend im subalpinen Fichtengürtel: <i>Polystichum lonchitis, Heracleum austriacum, Mnium spinosum, Campanula scheuchzeri, Cardamine enneaphyllos, Helleborus niger.</i> In hochmontanen Buchenwaldtypen positiv differenzierend: <i>Bellidiastrum michelii, Carex ferruginea, Rubus saxatilis, Cirsium erisithales, Betonica alopecuros, Carex digitata</i>
28 Kalk-Buchenwaldtypen. Sonnseitig bis +/-1450 m, schattseitig bis +/-1300 m Seehöhe. Differenzierende Artenkombination: Mycelis muralis, Euphorbia amygdaloides, Veronica urticifolia, Cardamine trifolia, Sanicula europaea, Viola reichenbachiana, Galium odoratum, Carex sylvatica
29 Untere Buchenstufe: Tieflagenarten (vorwiegend Helleboro nigri-Fagetum-Arten: Cephalanthera spp., Vincetoxicum hirundinaria, Convallaria majalis, Pimpinella sp., Campanula trachelium, Origanum vulgare, Euphorbia cyparissias, Polygonatum odoratum, Berberis vulgaris, Rhamnus cathartica) sind zumindest vereinzelt vorhanden. Obergrenze boden- und expositionsabhängig bei ca. 900-1000 m
30 Rendzinen im Talbodenbereich des Ennstales (inkl. Hangfuß). Trotz roher Bodenverhältnisse gute Wasserversorgung durch starken Wasserzug. Zeiger für Carbonatschutt wie Sorbus aria, Valeriana tripteris bei gleichzeitig Zeigern für günstige Wasser- und Nährstoffversorgung wie Paris quadrifolia, Brachypodium sylvaticum. Weiters typisch: Rubus saxatilis, Berberis vulgaris, Clematis vitalba. Anspruchsvoller Kalk-Buchenwald der unteren Buchenstufe über Rendzinen in Tallagen 7.13 - Anderer Standortstyp
31 Anspruchsvollere, besser wasser- und nährstoffversorgte Buchenwald-Variante der tieferen Lagen. Differenzierende Arten gegenüber Einheit 7.21: Rubus fruticosus agg., Campanula trachelium, Polygonatum multiflorum, Carex sylcatica, Sanicula europaea, Cardamine trifolia, Paris quadrifolia, Lamiastrum montanum, Athyrium filix-femina, Galium rotundifolium, Dryopteris filix-mas


32 Über Dachsteinkalk: unterschiedlich mächtige Lage aus schwerem Verwitterungslehm über Fels, Lehmpartien als Standorte anspruchsvoller Arten, auf felsigen Bereichen aber auch Magerrasenarten vereinzelt möglich (Betonica alopecuros, Buphthalmum salicifolium, Vincetoxicum hirundinaria).


Anspruchsvoller Kalk-Buchenwald der unteren Buchenstufe über Dachsteinkalk 7.11 - Über Hangschuttböden in Hangfuß-, Mulden- oder zumindest nicht konvexen Reliefsituationen.

Anspruchsvoller Kalk-Buchenwald der unteren Buchenstufe in begünstigten Hangsituationen 7.12
33 Über besseren kalkgeprägten Böden von ca. 1100 bis 1400 m Seehöhe. Fichten-Tannen-Buchenwald mit vielen hochmontanen Arten und Feuchtezeigern (<i>Adenostyles alliariae, Saxifraga rotundifolia, Viola biflora, Chaerophyllum hirsutum, Veratrum album, Doronicum austriacum.</i> Ohne die Trockenzeiger der Einheit 7.32 (s.u.). Hochmontaner Kalk-Fichten-Tannen-Buchenwald mit Hochstauden 7.31 - Anderer Standortstyp
34 Fichten-Tannen-Buchenwald der Hochlagen (ca. 1200 bis 1450 m Seehöhe) in flachgründigen, trockenen meist sonnseitigen Hangpositionen. Differenzierende Arten: Senecio abrotanifolius, Carduus defloratus, Cyanus montanus, Polygala chamaebuxus, Sesleria albicans, Betonica alopecuros. Buche typischerweise mit geringer Wuchskraft und säbelwüchsig. Hochmontaner Kalk-Fichten-Tannen-Buchenwald trockene Variante 7.32 - Die gerade genannten Zeiger hoher Sonneneinstrahlung fehlen. Oberhalb ca. 900-1000 m Seehöhe. Das Fehlen von Tieflagenarten unterscheidet vom Carbonatschutt-Fichten-Tannen-Buchenwald der unteren Buchenstufe. Krautschicht- und artenarme Ausbildungen über Abtragslagen. In besseren Lagen auch anspruchsvolle Arten (Lamiastrum montanum, Athyrium filix-femina, Paris quadrifolia, Cardamine trifolia). Auch hochmontane Arten möglich (u.a. Luzula sylvatica, Viola biflora, Bellidiastrum michelii). Carbonatschutt-Fichten-Tannen-Buchenwald der oberen Buchenstufe 7.22
35 Schattseitige, sehr felsige Standorte zwischen ca. 1400 m und 1600 m Seehöhe. Lärche ist konkurrenzstärkste Baumart. Fichte, Zirbe beigemischt. - Anderer Standortstyp
36 Sonderstandort: Extrem felsig-karg. Lichte Lärchen-Krüppelbestände. Initialer Fels-Lärchenwald 13.2 - Anderer Standortstyp
37 Unterhalb ca. 1650 (1700) m Seehöhe. Subalpiner Fichtengürtel. Differenzierende Arten: Helleborus niger (!), Luzula luzulina, Fragaria vesca, Mercurialis perennis
38 Große Carbonat-Blöcke liegen eingebettet in schwerem Lehm mit Haftnässe-Pseudovergleyung. Die Fichten (selten Lärche, Zirbe) stocken auf den Blöcken, nachdem sie dort in Rohhumusauflagen gekeimt sind. Markante Ausbildung am Südwestende des Sulzkarbodens. Fichtenblockwald über Pseudogley 12.4 - Anderer Standortstyp
39 Sonnseitige, trockene Ausbildung des subalpinen Kalk-Fichtenwaldes. Differenzierende Arten gegen 12.2: Senecio abrotanifolius, Lotus corniculatus, Sesleria albicans, Rosa sp., Erica carnea, Buphthalmum salicifolium. Trockener Kalkhang-Fichtenwald 12.3 - Zentrale Ausbildung des subalpinen Kalk-Fichtenwaldes. Über Rendzina bis Kalkbraunlehm. Ohne obengenannte Warmtrockniszeiger. Positive Differenzierung (mit zunehmender Bodenfeuchte deutlicher) durch: Athyrium filix-femina, Dryopteris dilatata, Cicerbita alpina, Crepis paludosa, Stellaria nemorum. Hochstauden-Fichtenwald mit Bergrasenarten 12.2
40 Pech-Rendzina über stufig verlaufendem Felshang. Stark humoses Material füllt Hohlräume und Mulden zwischen den Kalkfelsen aus. Mineralischer Feinboden und Bodenskelett fehlen. Lärchen-Zirbenwald über Pech-Rendzina 14.3
- Immer auch lehmige Bodenpartien vorhanden41
41 Bereich Zirbengarten. Sehr blockige Plateaufläche. Kalkfelsen dominieren, jedoch liegen auch mit schweren, sauren Lehmen verfüllte Mulden vor. Differenzierende Arten: Juniperus communis ssp. alpina, Rhodiola rosea, Rubus saxatilis, Salix appendiculata. Lärchen-Zirbenwald auf grobblockigem Plateau 14.1 - Bodentypen zwischen Rendzina und skelettreichen Kalkbraunlehmen. Differenzierende Arten: Primula elatior, Cardamine enneaphyllos, Primula matthioli, Dryopteris dilatata, Alchemilla anisiaca. Z. B. Hänge oberhalb der Wolfbauernhochalm. Lärchen-Zirbenwald auf Kalkhang 14.2
42 Montane Waldtypen über lehmigen Böden. Differenzierende Arten: <i>Mycelis muralis, Petasites albus, Ajuga reptans, Carex sylvatica, Sanicula europaea, Mercurialis perennis, Paris quadrifolia</i> , Buche

- 43 Böden durchgehend ohne nennenswerten Carbonateinfluss. Angetroffen über mächtigen Moränenlehmen, Werfener Schichten, Rauhwacke nach Ampfener 1935. Charakteristisch sind Säure- wie Stickstoffzeiger: Luzula luzuloides, Carex pilulifera, Milium effusum, Impatiens noli-tangere, Stellaria nemorum. Typisch ist weiters üppiges Farnwachstum. Fichten-Tannenwald über tiefgründigen Lehmen 10.1 - Kalkiges Gestein im Unterboden vorhanden. Daher Carbonateinfluss in abgeschwächter Form. Folgende Kalkzeiger differenzieren zu 10.1 (s. o.): Daphne mezereum, Helleborus niger, Euphorbia amygdaloides, Adenostyles glabra. (Am Gstattersteinplateau können die Kalkzeiger aber auch zur Gänze ausfallen.)......44 44 Mittelmontane, etwas trockenere Variante. Differenzierende Arten: Anemone nemorosa, Salvia glutinosa, Sanicula europaea, Brachypodium sylvaticum, Thuidium tamariscinum, Maianthemum bifolium, Esche. Mittelmontaner Lehm-Fichten-Tannen-Buchenwald 8.1 - Hochmontane Variante. Nicht in Kessellagen mit Kaltluftseebildung. (Wird dort vom Hochstauden-Fichtenwald ersetzt - siehe Punkt 23.) Diff. Arten: Luzula sylvatica, Doronicum austriacum, Cicerbita alpina, Veratrum album, 45 Plateau des Gstatterstein. Tertiäre Altlandschaftsfläche. Kalkzeiger fallen bis auf Felshafter weitestgehend Hochmontaner Lehm-Fichten-Tannen-Buchenwald Gstattersteinplateau 8.22 - Hangvariante (typisch für Hangverflachungen) mit hochmontanen, anspruchsvollen Arten wie Saxifraga rotundifolia, Cicerbita alpina, Doronicum austriacum, Dryopteris filix-mas. Hochmontaner Lehm-Fichten-Tannen-Buchenwald typische Variante 8.21 46 Besonders nährstoffarme Standorte. Durchgehend hohe Deckungsgrade für Sphagnum quinquefarium. Besonders auffällige Vitalität der Heidelbeere. Ausfall bereits aller mäßig anspruchsvollen Arten. Differenzierende - Zumindest einige mäßig anspruchsvolle Arten bleiben erhalten: Oxalis acetosella, Solidago virgaurea, Luzula 47 Fichtenwälder mit Hochmoorcharakter. Mächtige Torfmoosbildungen über massiv verdichteten Böden. Bestände nur licht und schwachwüchsig. Differenzierende Arten: Eriophorum vaginatum, Vaccinium uliginosum. **Bodensaurer Torfmoos-Fichtenwald mit Wollgras 11.12** - Kein Hochmoorcharakter. Ohne die beiden obengenannten Arten. **Bodensaurer Torfmoos-Fichtenwald typische Variante 11.11** 48 Stickstoffreich-quellige Verhältnisse (z.B. über Jura-Sedimenten am NO-Abhang des Lugauer). Differenzierende Arten: Stellaria nemorum, Ranunculus aconitifolius, Cardamine amara, Caltha palustris.
- Bodensaurer Fichtenwald mit Sauerklee mit Hochstaudenfluren-Arten 11.22
- Mehr Säurezeiger (z.B. Lycopodium annotinum, Gymnocarpium dryopteris, Hylocomium splendens, Luzula luzuloides, Pleurozium schreberi). Calamagrostis villosa und Heidelbeere aspektbestimmend. Typisch für die Grauwackenzone.

 Bodensaurer Fichtenwald mit Sauerklee ohne Hochstaudenfluren-Arten 11.21

