

Langfristige Ökosystembeobachtung – Endbericht zur Förderperiode 2020-2023

Modul 01: Standortklima und pflanzliche Produktivität

Zitiervorschlag: Newesely C, Niedrist G, Tappeiner U, Körner C (2023) Interdisziplinäres, integratives Monitoring- und Forschungsprogramm zur langfristigen, systematischen Ökosystembeobachtung im Nationalpark Hohe Tauern 2020-2023. - Modul 01: Standortklima, Bodenphysik, Bodenchemie und pflanzliche Produktivität. Endbericht zur Förderperiode 2020-2023. Unveröffentlichter Bericht im Auftrag des Nationalparks Hohe Tauern.

Innsbruck, 9.6.2023

Impressum

Für den Inhalt verantwortlich:

Christian Newesely und Ulrike Tappeiner / Universität Innsbruck, Georg Niedrist / Eurac Research, Christian Körner / Universität Basel

Nationalparkrat Hohe Tauern, Kirchplatz 2, 9971 Matrei i.O.

Projektleitung: Ulrike Tappeiner

Titelbild: Ein Transekt im Untersuchungsgebiet Innergschlöss (2350 m üNN) wird beprobt (8/2017). © Newesely

Inhaltsverzeichnis

Einlei	tung	4
Meth	odik	4
a.	Präambel	4
b.	Standorte und Dauerbeobachtungsflächen	4
c.	Phenocam	4
Ergeb	nisse	5
_	Klimatische Standortparameter	
b.	Pflanzliche Biomasse	13
c.	Phenocam	14
Interp	pretation und Diskussion	16
a.	Standortcharakterisierung	16
b.	Biomasse	17
Dank	sagung	18
Abbild	dungsverzeichnis	19
Litera	turverzeichnis	21
Litera	turverzeichnis	21
Anha	ng	22
a.	Standardgradtage	22
b.	Bodentemperaturverläufe	23

Einleitung

Der hier vorliegende Endbericht 2023 umfasst die Förderperiode 2020-2023 und stellt die Monitoringdaten der Messperiode 2020-2022 dar. Er basiert auf Newesely (et al. 2019a), der die Ergebnisse der Monitoringperiode von 2017 – 2019 umfasst und diskutiert. Aus Gründen der Redundanz wird daher auf eine nochmalige detaillierte Beschreibung der Untersuchungsgebiete bzw. der Methodik verzichtet. Es werden nur diejenigen Methoden beschrieben, die neu in der hier beschriebenen Periode dazugekommen sind und daher noch nicht im Methodenhandbuch (Newesely et al. 2019b) aufgenommen sind.

Methodik

a. Präambel

Die verwendete Methodik sowie die Lage der Dauerbeobachtungsflächen und Transekte ist im Methodenhandbuch (Newesely et al. 2019b) detailliert dargestellt. Hier sollen die wesentlichen Daten zu den Standorten und zur Methodik nur kurz angesprochen werden. Während der Projektperiode 2020-2023 wurde im Innergschlöss zusätzlich eine spezielle Kamera (Phenocam) installiert um die Ausaperung sowie die Entwicklung der Vegetation beobachten zu können., die in c. beschrieben wird.

b. Standorte und Dauerbeobachtungsflächen

In Tabelle 1 werden die Standorte der Untersuchung sowie die Höhe die geografischen Koordinaten sowie die Anzahl der jeweils untersuchten Transekte zusammenfassend dargestellt. Wie in Newesely et al. 2019a ausführlich beschrieben wurden die Untersuchungen auf jedem Transekt im optimalen, also oberen (K), mittleren (M) und im unteren, pessimalen Bereich (T) durchgeführt.

Tabelle 1:Tabelle der Beobachtungsstandorte (aus Newesely et al. 2019a)

Name / Code	Region (Land)	Geographische Koordinate	Höhe (m)	Anzahl Transekte
Innergschlöss / IN	Ost-Tyrol (A)	47°06'40.1" N, 12°25'35.5" E	2350	5
Seebachtal / SE	Kärnten (A)	47°02'21.9" N, 13°10'58.1" E	2303	3
Untersulzbachtal / UN	Salzburg (A)	47°09'58.2" N, 12°19'51.1" E	2380	6
Furka / FU	Schweiz (CH)	46°34'40" N, 08°25'12" E	2467	5
Oberettes / OB	Südtirol (I)	46°45′59.9" N, 10°42′38.2" E	2700	3

c. Phenocam

Für die kontinuierliche Beobachtung der Ausaperung als auch der Entwicklung der Vegetation, wurde im Bereich der Untersuchungsflächen im Innergschlöss im August 2021 eine Kamera installiert. Dafür wurde in unmittelbarer Nähe der Messflächen ein ca. 2 m hohes Dreibeinstativ aufgestellt. Das Stativ ist zusätzlich mit Stahlseilen als Sturmschutz verspannt. An dieses Stativ sind ein Solarmodul für die Energieversorgung, eine Kamera sowie ein kleiner (20x20cm) Schaltschrank für die Datalogger montiert. Zusätzlich ist an dieses Stativ auch ein Decagon SDI-12 Sensor (Decagon Devices, Inc.) zur Erfassung der Vegetationsentwicklung (NDVI, Normalized Difference Vegetation Index und PRI, Photochemical Reflectance Index) montiert. Die Daten wurden regelmäßig auf den Server des internationalen PhenoCam Netzwerks übertragen, werden dort einer ersten automatisierten Auswertung unterzogen und sind dort unter der Adresse https://phenocam.nau.edu/webcam/sites/nphtin/ verfügbar.

Ergebnisse

a. Klimatische Standortparameter

Eine grundsätzliche klimatische Standortcharakterisierung ist anhand der gemessenen Lufttemperaturen möglich. In Abbildung 1 bis Abbildung 3 sind die Verläufe der Lufttemperaturen für die drei Standorte im Nationalpark Hohe Tauern, sowie für die beiden Zusatzstandorte in der Schweiz und in Südtirol für die Periode Jänner 2020 bis August 2022 dargestellt.

Die Daten entstammen eigenen Messstationen, die unmittelbar am Standort der Transekte stehen. Im Seebachtal ergaben sich einige Messlücken, da der Logger trotz einer mehrfach gesicherten Aufstellung, vermutlich durch Eislast, heruntergerissen wurde. Der Jahresverlauf der Lufttemperatur bildet an allen Standorten den klassischen Verlauf für ein Jahreszeitenklima ab, mit der Abnahme der Lufttemperatur in der Winterperiode, dem Anstieg der Lufttemperaturen bis Mitte August und der nachfolgenden Lufttemperaturabnahme im Herbst.

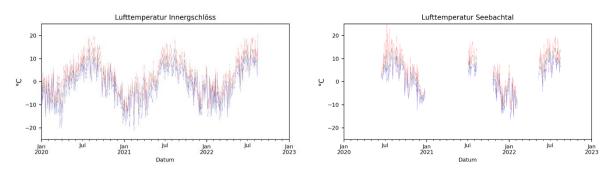


Abbildung 1: Lufttemperatur im Untersuchungszeitraum, Innergschlöss (2350 m üNN, links), Seebachtal (2300 m üNN, rechts) rot: Tagesmaxima, schwarz: Tagesmittel, Blau: Tagesminima

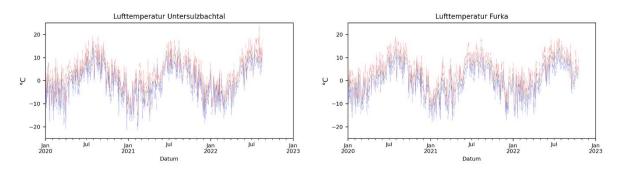


Abbildung 2: Lufttemperatur im Untersuchungszeitraum, Untersulzbachtal (2380 m üNN, links), Furka (2460 m üNN, rechts)

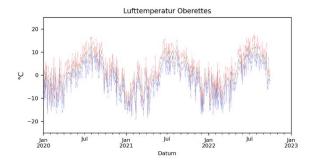


Abbildung 3: Lufttemperatur Im Untersuchungszeitraum Oberettes (2700 m üNN)

Der Vergleich der Jahresmittelwerte (Periode Jänner - Dezember) ist in Abbildung 4 dargestellt. Für das Seebachtal ist eine Mittelwerts-Berechnung aufgrund des zeitweisen Ausfalls der Messung nicht möglich.

Das Jahr 2020 war über den gesamten Alpenbogen sehr warm. Österreichweit war es das 5-wärmste seit Aufzeichnungsbeginn. Auf der hochalpinen Station Sonnblick war es sogar das bisher wärmste Jahr. Demgegenüber war das Jahr 2021 deutlich kühler als der Durchschnitt. Für 2022 lagen zum Berichtszeitpunkt nur Daten für die erste Jahreshälfte vor. Die Temperaturwerte der Station Sonnblick lagen für 2022 gegenüber der Periode 1961-1990 um 2,3°C höher.

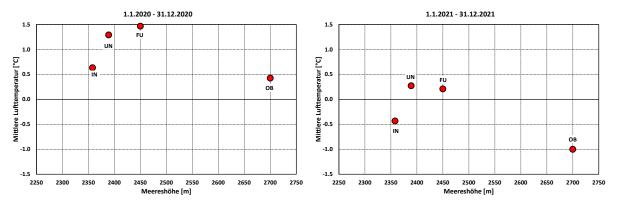


Abbildung 4 (links): Vergleich der Jahresmittel der Lufttemperatur zwischen allen Standorten vom 1.1.2020 bis 31.12.2020 (links), 1.1.2021 bis 31.12.2021 (rechts). Aufgrund des zeitweisen Ausfalls der Messtation Seebachtal ist eine Mittelwertbildung für diese Station nicht möglich

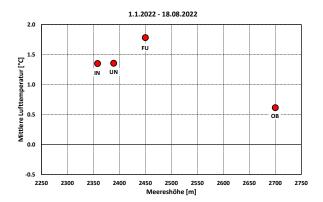


Abbildung 5 (links): Vergleich der Jahresmittel der Lufttemperatur zwischen allen Standorten vom 1.1.2022 bis zur Ernte am 18.8.2022. Aufgrund des zeitweisen Ausfalls der Messtation ist eine Mittelwertbildung für das Seebachtal nicht möglich.

Die Temperatur, die von den Pflanzen tatsächlich erlebt wird, ist für die Vegetationsentwicklung wesentlich. Auf allen Transekten wurden daher an 3 Stellen entlang des Gradienten vom optimalen Bereich (K) zum Pessimum (T) Bodentemperaturen in einer Tiefe von 3-4 cm gemessen, da sich die Blattmeristeme der Graminoiden (Gräser und Seggen), sowie die Apikalmeristeme der meisten krautigen Arten in dieser Bodentiefe befinden. Der oberste Bodenbereich ist biologisch der aktivste: hier befindet sich eine hohe Feinwurzelmasse, aber auch eine hohe mikrobielle und bodenzoologische Aktivität.

Tabelle 2: Gesamtübersicht über die klimatischen Standortfaktoren der Transekte an den untersuchten Standorten Seebachtal (SE), Innergschlöss (IN), Untersulzbachtal (UN), Furka (FU) und Oberettes (OB) entlang der Gradienten der 'Habitatgunst' von K (optimal) über M (Mitte) und T (pessimal) für alle Transekte im Jahr 2020. Die Wachstumsperiode entspricht dem Zeitraum ab dem Datum der Schneeschmelze und endet mit dem Einschneien. Die mittlere Bodentemperatur sowie die mittlere Lufttemperatur sind der Jahresmittelwert. "nd" bedeutet das keine Daten vorhanden waren, da entweder keine Datalogger installiert waren oder ein Ausfall der Registrierung stattgefunden hat.

2020		ittlere Bo	-		Mi	ttlere Boo		Mittlere	
2020	(\	Wachstun	nsperiode) [°C]		ganzes	Jahr [°C]		Lufttemperatur
	K	М	Т	Mittelwert	K	М	Т	Mittelwert	[°C]
IN / 2358m	11.6	12.0	11.8	11.8	3.2	2.6	2.3	2.7	0.63
IN1	11.6	12.7	11.3		3.2	1.5	2.3		
IN2	11.0	11.3	10.9		2.7	2.5	2.2		
IN3	12.0	11.1	nd		3.2	2.9	nd		
IN4	11.8	12.4	13.2		3.6	3.1	2.6		
IN5	11.7	12.6	11.7		3.3	3.1	2.3		
SE / 2300m	10.7	10.4	10.1	10.4	3.1	3.5	2.8	3.1	nd
SE1	11.2	nd	10.1		2.6	nd	2.1		
SE2	9.7	10.4	9.5		3.3	4.1	3.5		
SE3	11.3	10.3	10.7		3.2	2.9	2.8		
UN / 2389m	11.3	11.6	11.5	11.4	3.7	3.5	3.3	3.5	1.29
UN1	12.4	12.2	12.1		3.9	3.5	3.1		
UN2	11.6	nd	11.4		4.0	nd	3.7		
UN3	11.1	12.1	12.3		3.5	3.7	3.6		
UN4	10.6	11.6	11.2		3.5	3.4	3.0		
UN5	10.3	10.5	10.3		3.5	3.4	3.0		
UN6	11.5	11.4	nd		3.6	3.6	nd		
FU / 2450 m	12.1		12.1	12.1	3.5		2.9	3.3	1.47
FU1	12.4	nd	11.7		3.9	nd	3.0		
FU2	12.2	nd	12.6		3.2	nd	3.1		
FU3	12.1	nd	11.8		3.3	nd	2.5		
FU4	12.1	nd	nd		4.3	nd	nd		
FU5	11.6	nd	nd		3.1	nd	nd		
OB / 2700 m	10.1	nd	10.5	10.4	2.6	nd	2.7	2.7	0.42
OB1	nd	nd	10.4		nd	nd	2.7		
OB2	nd	nd	nd		nd	nd	nd		
OB3	10.1	nd	10.7		2.6	nd	2.7		

Tabelle 3: Gesamtübersicht über die klimatischen Standortfaktoren der Transekte an den untersuchten Standorten Seebachtal (SE), Innergschlöss (IN), Untersulzbachtal (UN), Furka (FU) und Oberettes (OB) entlang der Gradienten der 'Habitatgunst' von K (optimal) über M (Mitte) und T (pessimal) für alle Transekte im Jahr 2021. Die Wachstumsperiode entspricht dem Zeitraum ab dem Datum der Schneeschmelze und endet mit dem Einschneien. Die mittlere Bodentemperatur sowie die mittlere Lufttemperatur sind der Jahresmittelwert. "nd" bedeutet das keine Daten vorhanden waren, da entweder keine Datalogger installiert waren oder ein Ausfall der Registrierung stattgefunden hat.

2021		ittlere Bo Wachstun	•		Mi	ttlere Boo	dentempo		Mittlere
	K	M	T	Mittelwert	K	M	Mittelwert	Lufttemperatur [°C]	
IN / 2358m		• • • • • • • • • • • • • • • • • • • •	-				T		
-	10.1	10.1	9.8	10.0	2.7	2.4	1.9	2.4	-0.43
IN1	9.9	10.4	9.4		2.6	2.4	1.7		
IN2	9.4	9.6	8.8		2.3	2.1	1.7		
IN3	10.6	9.7	nd		2.8	2.5	nd		
IN4	10.6	nd	11.0		3.1	nd	2.3		
IN5	10.1	10.8	nd		2.7	2.8	nd		
SE / 2300m	10.0	9.5	9.2	9.6	2.7	2.7	2.5	2.7	nd
SE1	9.8	8.9	8.7		2.7	2.3	2.2		
SE2	9.8	10.5	9.3		2.4	3.1	2.7		
SE3	10.3	9.3	9.6		3.0	2.7	2.7		
UN / 2389m	10.6	10.7	10.7	10.7	3.2	3.3	2.7	3.1	0.27
UN1	11.4	11.1	nd		3.6	3.5	nd		
UN2	11.2	nd	10.9		3.4	nd	3.3		
UN3	10.2	11.2	11.3		3.1	3.4	3.4		
UN4	10.1	10.7	11.0		3.2	3.4	1.2		
UN5	10.0	9.9	9.4		2.9	3.0	2.6		
UN6	10.8	10.7	10.8		3.2	3.2	3.3		
FU / 2450 m	10.6	nd	10.4	10.5	3.1	nd	2.4	2.8	0.21
FU1	11.2	nd	10.5		3.2	nd	2.6		
FU2	10.7	nd	10.9		2.9	nd	2.7		
FU3	10.2	nd	9.8		2.6	nd	1.9		
FU4	10.5	nd	nd		3.8	nd	nd		
FU5	10.4	nd	nd		3.1	nd	nd		
OB / 2700 m	8.4	9.1	8.4	8.6	1.2	2.5	2.2	2.0	-1.00
OB1	8.1	8.8	8.2		2.0	2.5	2.1		
OB2	8.7	nd	8.6		0.4	nd	2.3		
OB3	nd	9.3	nd		nd	2.6	nd		

Tabelle 2 und Tabelle 3 erlauben einen detaillierteren Vergleich sowohl der Transekte innerhalb eines Standortes als auch zwischen den Standorten. Wie schon in den in Newesely et al. 2019a gezeigten Ergebnisse konnte die klassische ,lapse rate' der Lufttemperatur, die mit der Meereshöhe abnimmt, nicht festgestellt werden. Die standörtlichen klimatischen Bedingungen überlagen diese ansonsten allgemein anerkannte Regel.

Entsprechend der Ausführungen aus dem 1 Ergebnisbericht Newesely et al. 2019a lagen die Bodentemperaturen auf allen Transekten und Standorten im Mittel deutlich höher als die Lufttemperatur. Da eine direkte Messung der Bestandestemperatur nicht möglich ist, werden die Bodentemperaturen als Proxy für die Bestandestemperaturen gewählt. Daraus ergibt sich, dass die niederwüchsigen Pflanzenbestände in der alpinen Stufe deutlich von der Lufttemperatur entkoppelt sind. Für das Pflanzenwachstum ökologisch relevant ist aber eine mittlere Bestandes- und Bodentemperatur von über 5°C im Tagesmittel (vgl. Tabelle 2 für 2020 und Tabelle 3 für 2021).

Prinzipiell lagen die mittleren Bodentemperaturen in der Wachstumsperiode bei allen Standorten 2020 höher als 2021, aber auch höher als in der Periode 2017-2019 (Newesely et al. 2019a). 2020 wurden die höchsten mittleren Bodentemperaturen in der Wachstumsperiode auf der Furka (12,1°C) gemessen, gefolgt vom Innergschlöss (11,8°C), dem Untersulzbach (11,4°C), Seebachtal (10,4°C) und Oberettes (10,3°C) (Tabelle 2). Obwohl die Mittelwerte der Lufttemperatur von 2017 bis 2021 sehr unterschiedlich waren, zeigte sich, dass die mittlere Bodentemperatur während

der schneefreien Zeit über die Jahre vergleichbar war. Abbildung 6 zeigt die mittlere jährliche Bodentemperatur während der schneefreien Zeit für alle Gebiete für die einzelnen Messjahre. Deutlich erkennbar sind die sehr warmen Jahre 2017 und 2020, sowie das sehr kühle Jahr 2021. Mit der Ausnahme des Untersulzbachtals 2021 sowie das Seebachtal 2019 erkennt man einen sehr einheitlichen Trend über alle Gebiete. Ursächlich für die Abweichungen ist die deutlich unterschiedliche Schneedeckenandauer im Seebachtal 2017 bzw. Untersulzbachtal 2021 im Vergleich zu den anderen Untersuchungsgebieten. Der Winter 2020/21 war in den Nordalpen sehr schneearm, wohingegen in den Südalpen speziell die Monate Jänner bis März sehr schneereich waren, woraus sich der deutlich unterschiedliche Ausaperungszeitpunkt erklären lässt (Tabelle 6).

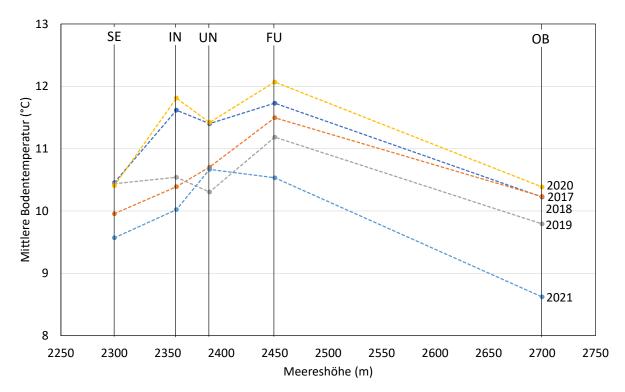


Abbildung 6: Mittlere Bodentemperatur während der Wachstumsperiode gegen den Höhengradienten der Untersuchungsflächen für die Jahre 2017-2021.

Wie schon in Newesely et al. 2019a beschrieben ist für das pflanzliche Wachstum vor allem die Periode zwischen dem Ausapern und dem Zeitpunkt des Vegetationshöhepunkts, der auch dem Erntezeitpunkt entspricht, relevant. Neben der Temperatur spielt für die pflanzliche Produktivität auch die Dauer der Wachstumsperiode eine wichtige Rolle. Als Maß für die Wärmemenge, die den Pflanzen für das Wachstum zur Verfügung steht, wurde daher die Wärmesumme aus den Bodentemperaturen berechnet, indem die Bodentemperaturen, bei denen die Werte ≥ 5°C waren, addiert und in Gradstunden (GH₂₅) ausgedrückt wurden (siehe Abbildung 7, Tabelle 4 und 5). Bei der Berechnung wurden die Gradstunden der Bodentemperaturen der 'K', 'T' und 'M' Bereiche aller Transekte für jedes Gebiet gepoolt. Die vollständigen Kurven der Bodentemperatur für die einzelnen Transekte sind den Abbildungen im Anhang (Abbildung 18ff) zu entnehmen. In Abbildung 7 zeigt die Länge der Balken den Unterschied zwischen dem jeweiligen 'K'-Bereich mit optimalen Bedingungen (kürzeste Schneedeckenandauer) und dem 'T'-Bereich am Grund des Schneeschmelzgradienten mit der kürzesten Wachstumsperiode (pessimaler Bereich). Dabei sind deutliche Unterschiede zwischen den beiden Jahren, aber auch innerhalb der Standorte entlang der Ausaperungsgradienten zu erkennen. Das Jahr 2021 war generell kühler als das Jahr 2020. Vergleichbare Wärmesummen zwischen 2020 und 2021 konnten nur im Untersulzbachtal ermittelt werden. Die größten Unterschiede zwischen den Jahren kann man für die Furka und Oberettes erkennen, wobei aber berücksichtigt werden muss, dass die Vegetationsentwicklung auf der Furka im Jahr 2021 derartig rasch erfolgte, dass der Vegetationshöhepunkt im Vergleich mit den anderen Untersuchungsgebieten schon 10 bis 15 Tage früher erreicht wurde und somit auch die Ernte deutlich früher stattfand. Zusätzlich erfolgte die Ernte auf der Furka in den Zonen K, M und T entsprechende der Entwicklung der Vegetation zu unterschiedlichen Zeitpunkten, woraus sich speziell für 2021 das weitgehende Fehlen von Unterschieden zwischen den Erntezonen erklärt.

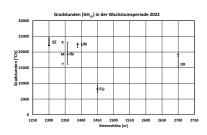


Abbildung 7: Gradstunden (T_{25}) in [°CH] aller Standorte (Seebachtal SE, Innergschlöss IN, Untersulzbach UN, Furka FU, Oberettes OB). GH_{25} sind ein Maß für die Wärmesummen, die den Pflanzen für das Wachstum zur Verfügung stehen. Für die Berechnung wurden nur Bodentemperaturen ≥ 5 °C bis zur Ernte 2020 (links), 2021 (Mitte) und 2022 (rechts) berücksichtigt und zudem für die 'K', 'T' und 'M' pro Standort gepoolt. Die Balken geben die Variabilität für die einzelnen Gebiete entlang des Gradienten vom lokalen Optimum der Vegetationsentwicklung K über einen mittleren Transektbereich M bis zum lokalen Pessimum der Vegetationsentwicklung T an.

Die Unterschiede zwischen dem botanisch optimalen 'K'-Bereich und dem pessimalen 'T'-Bereich waren im Innergschlöss im Untersulzbachtal stark und im Seebachtal geringer ausgeprägt. Zudem war es für das Seebachtal nur bedingt möglich, die exakte Schneedeckenandauer zu bestimmen, da einzelne Flächen durch Windverfrachtungen mehrfach schneefrei waren. Aus den Bodentemperaturkurven ist abzulesen, dass der Transekt 2 sowohl 2020/21 als auch 2021/22 (Abbildung 24, Seite 26) während des gesamten Winters über längere Perioden schneefrei war. Ein Vergleich der botanisch pessimalen 'T'-Bereiche (Tabelle 4 und 5 und Abbildung 7) zeigt, dass die Wärmesummen bis auf das Untersulzbachtal im Jahr 2021 niedriger waren als 2020. Auffällig sind die sehr hohen Werte für 2022 (Abbildung 7 rechts), die z.T. doppelt so hoch lagen als 2020 und auch höher lagen als im bislang wärmsten Untersuchungsjahr 2017 (Newesely et al. 2019a). Auch hier ist zu erkennen, dass sich die frühere Ernte auf der Furka deutlich auf die Wärmesummen ausgewirkt hat.

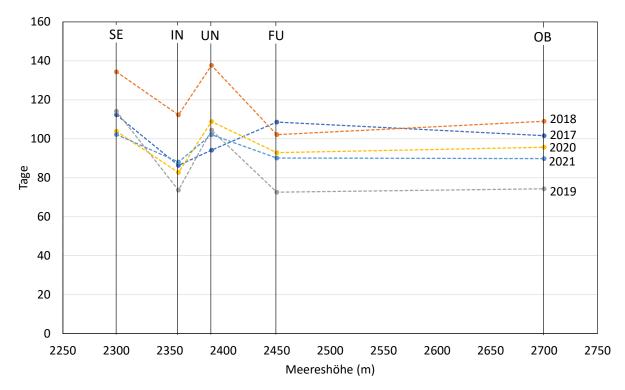
Tabelle 4: Gesamtübersicht über die für das Wachstum der pflanzlichen Biomasse relevanten klimatischen Faktoren der Transekte an den untersuchten Standorten Seebachtal (SE), Innergschlöss (IN), Untersulzbachtal (UN), Furka (FU) und Oberettes (OB) entlang der Gradienten der botanischen 'Habitatgunst' von K (optimal) über M (Mitte) und T (pessimal) für alle Transekte im Jahr 2020. "nd" bedeutet das keine Daten vorhanden waren, da entweder keine Datalogger installiert waren oder ein Ausfall der Registrierung stattgefunden hat.

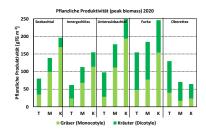
2020	Län	ge der Wa	achstums	periode			stage bis Ei chung in K		Gradstunden bis Ernte			
	K	М	T	Mittelwert	K	М	Т	Mittelwert	K	М	T	Mittelwert
IN / 2358m	95	82	67	83	52 (0,8)	40 (0,3)	26 (0,6)	39 (1,2)	14364.0	11623.5	7558.4	11182
IN1	99	76	74		53	41	28		14807.0	12336.5	8052.5	
IN2	85	85	69		39	38	22		10418.0	10674.0	6461.5	
IN3	96	90	nd		49	44	34		14309.0	11893.0	9186.5	
IN4	99	78	65		59	37	24		16209.5	11078.0	7874.5	
IN5	99	81	62		58	40	20		16076.5	12136.0	6217.0	
SE / 2300m	100	114	100	104	56 (1,5)	63 (3,8)	52 (1,9)	56 (2,3)	13559.0	15019.8	12106.0	13379
SE1	90	nd	82		43	nd	34		11072.5	nd	8351.0	
SE2	109	129	119		72	75	71		15804.5	17574.5	14984.0	
SE3	102	100	100		53	51	52		13800.0	12465.0	12983.0	
UN / 2389m	115	106	103	109	68 (0,5)	62 (0,9)	56 (2,5)	63 (1,7)	17919.0	16657.2	15323.2	16710
UN1	112	95	91		63	49	45		18886.0	14479.0	13028.5	
UN2	125	nd	115		76	74	70		19786.5	18826.0	18083.0	
UN3	112	111	107		66	63	58		17136.0	17972.0	16991.5	
UN4	113	104	97		67	57	50		16625.5	15231.5	13993.5	
UN5	118	112	107		71	66	59		17180.0	15991.5	14519.5	
UN6	111	112	nd		66	65	nd		17900.0	17443.0	nd	
FU / 2450 m	99	nd	82	93	50 (0,9)	nd	33 (0,8)	42 (2,3)	14993.5	nd	12417.3	13705
FU1	107	nd	90		59	nd	38		16804.6	nd	14243.5	
FU2	95	nd	84		55	nd	42		16957.7	nd	13368.6	
FU3	95	nd	74		54	nd	34		17045.0	nd	10371.1	
FU4	110	nd	nd		48	nd	22		14511.8	nd	10843.3	
FU5	88	nd	nd		35	nd	29		9648.2	nd	13260.2	
OB / 2700 m	103	nd	92	96	60	nd	47 (2,7)	51 (2,6)	14583.0	nd	11600.3	12595
OB1	nd	nd	91		nd	nd	45		nd	nd	10575.0	
OB2	nd	nd	nd		nd	nd	nd		nd	nd	nd	
OB3	103	nd	93		60	nd	48		14583.0	nd	12625.5	

Tabelle 5: Gesamtübersicht über die für das Wachstum der pflanzlichen Biomasse relevanten klimatischen Faktoren der Transekte an den untersuchten Standorten Seebachtal (SE), Innergschlöss (IN), Untersulzbachtal (UN), Furka (FU) und Oberettes (OB) entlang der Gradienten der botanischen 'Habitatgunst' von K (optimal) über M (Mitte) und T (pessimal) für alle Transekte im Jahr 2021. "nd" bedeutet das keine Daten vorhanden waren, da entweder keine Datalogger installiert waren oder ein Ausfall der Registrierung stattgefunden hat.

2021	Län	ge der Wa	achstums	periode		Vachstums dardabwei	Ū		Gradstunden bis Ernte			
	K	М	T	Mittelwert	K	М	T	Mittelwert	K	М	Т	Mittelwert
IN / 2358m	98	86	72	88	49 (0,6)	37 (0,5)	24 (1,1)	38 (1,5)	12934.4	9875.9	6233.8	9927.6
IN1	101	79	76		52	31	28		13398.0	8483.6	7109.5	
IN2	88	86	70		40	38	23		9971.0	9751.5	5529.0	
IN3	98	91	nd		48	44	nd		12908.5	11069.5	nd	
IN4	104	nd	71		53	33	22		13952.5	8851.5	6131.5	
IN5	103	90	nd		54	41	24		14442.0	11223.5	6165.0	
SE / 2300m	104	103	99	102	51 (1,3)	49 (1,4)	47 (1,7)	49 (1,3)	12487.3	12030.7	10703.5	11740.5
SE1	92	88	80		39	36	29		9422.0	8038.0	6194.0	
SE2	118	118	115		64	64	63		15630.5	17123.4	14355.5	
SE3	104	103	102		50	48	49		12409.5	10930.7	11561.0	
UN / 2389m	108	105	90	102	61 (0,1)	58 (2,4)	53 (0,8)	57 (1,5)	17025.6	16152.9	14510.8	15881.3
UN1	110	103	nd		61	53	47		18153.0	15343.5	13170.5	
UN2	111	nd	109		63	nd	61		18037.0	nd	17099.5	
UN3	107	109	106		61	60	58		16426.5	17423.5	16704.0	
UN4	110	105	40		61	56	39		16121.5	15548.5	10317.5	
UN5	106	104	94		61	59	57		16114.0	15528.5	13958.5	
UN6	107	108	105		60	60	57		17301.5	16920.5	15814.5	
FU / 2450 m	100	nd	72	90	40 (0,4)	nd	28 (1,8)	35 (2,0)	5097.6	nd	4600.9	4911.4
FU1	99	nd	82		41	nd	40		5518.7	nd	5535.8	
FU2	94	nd	71		38	nd	30		4784.6	nd	4302.9	
FU3	89	nd	64		34	nd	13		4492.0	nd	3964.2	
FU4	124	nd	nd		45	nd	nd		5671.3	nd	nd	
FU5	98	nd	nd		41	nd	nd		5021.6	nd	nd	
OB / 2700 m	97	86	85	90	50 (2,9)	43 (2,5)	38 (2,2)	43 (2,2)	8854.5	8760.1	6245.3	7953.3
OB1	83	81	76		45	41	38		7457.5	8176.2	6115.5	
OB2	112	nd	95		54	nd	37		10251.5	nd	6375.0	
OB3	nd	92	nd		nd	44	nd		nd	9344.0	nd	

Wie zuvor angeführt sind neben der mittleren Bodentemperatur auch die Anzahl der Tage mit einer mittleren Bodentemperatur über 5°C für das Wachstum der Pflanzen relevant (Abbildung 8). Im Gegensatz zur mittleren Bodentemperatur bei der die Furka bis auf 2021 die höchsten Werte hat (Abbildung 6) ist die Anzahl der Tage mit mittleren Bodentemperaturen über 5°C bis auf 2017 im Untersulzbachtal am höchsten. Besonders Auffällig ist das Jahr 2018, das zwar bei den mittleren Bodentemperaturen unter 2020 und 2017 lag, trotzdem aber in allen Gebieten mit Ausnahme der Furka die meiste Anzahl an Tagen über 5°C hatte.




Abbildung 8: Anzahl der Tage mit mittlerer Bodentemperatur über 5°C gegen den Höhengradienten der Untersuchungsflächen für die Jahre 2017-2021.

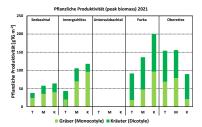

Der Zeitpunkt des Ausaperns ist aus dem Verlauf der Bodentemperaturen eindeutig durch einen Temperaturanstieg von 0° auf 5-10°C sowie ein deutliches Schwanken der Temperaturen im Tagesverlauf erkennbar und kann daher für die einzelnen Transekte sehr genau ermittelt werden (Newesely et al. 2019a). Die Daten für die Periode 2020 bis 2022 sind in Tabelle 6 angegeben. An den meisten Standorten unterschieden sich die Ausaperungszeiten zwischen den Jahren 2020, 2021 und 2022 beträchtlich. Im Mittel über alle Transekte in allen Gebieten aperten die Flächen 2022 um 33 Tage früher aus als 2021. Gegenüber 2020 aperten die Flächen 2022 um 23 Tage früher aus.

Tabelle 6: Datum der Schneeschmelze an den untersuchten Standorten Seebachtal (SE), Innergschlöss (IN), Untersulzbachtal (UN), Furka (FU) und Oberettes (OB) für alle Transekte entlang der Gradienten der 'Habitatgunst' von K (optimal) über M (Mitte) und T (pessimal). Zusätzlich zu den Ausaperungszeitpunkten ist auch die Schneedeckenandauer für den jeweiligen Winter angegeben.

	1	К			eedeckena		1	М.			eedeckena		1	Т			eedeckena	
	2020	2021	2022	19/20	20/21	21/22	2020	2021	2022	19/20	20/21	21/22	2020	2021	2022	19/20	20/21	21/22
SE / 2300m	31.05.2020	20.06.2021	10.05.2022	199	212	169	19.05.2020	21.06.2021	10.05.2022	187	214	170	04.06.2020	23.06.2021	12.05.2022	202	216	172
SE1	27.06.2020	02.07.2021	20.05.2022	225	224	179	nd	05.07.2021	21.05.2022	nd	227	180	05.07.2020	11.07.2021	27.05.2022	233	233	186
SE2	23.04.2020	07.06.2021	25.04.2022	160	199	154	23.04.2020		25.04.2022	160	199	154	23.04.2020	07.06.2021	25.04.2022	160	199	154
SE3	13.06.2020	22.06.2021	16.05.2022	211	214	175	15.06.2020	23.06.2021	16.05.2022	213	215	175	15.06.2020	23.06.2021	16.05.2022	213	215	175
IN / 2358m	18.06.2020	29.06.2021	27.05.2022	231	277	207	01.07.2020	11.07.2021	10.06.2022	244	290	220	17.07.2020	22.07.2021	24.06.2022	260	300	235
IN1	16.06.2020	01.07.2021	20.05.2022	229	279	199	30.06.2020	19.07.2021	06.06.2022	243	297	216	12.07.2020	21.07.2021	21.06.2022	255	299	231
IN2	02.07.2020	10.07.2021	08.06.2022	245	288	218	02.07.2020	11.07.2021	10.06.2022	245	289	220	19.07.2020	27.07.2021	24.06.2022	262	305	234
IN3	19.06.2020	28.06.2021	10.06.2022	232	276	220	28.06.2020	06.07.2021	19.06.2022	241	284	229	19.07.2020	12.07.2021	28.06.2022	262	290	238
IN4	12.06.2020	24.06.2021	20.05.2022	225	272	199	04.07.2020	15.07.2021	nd	247	293	nd	16.07.2020	27.07.2021	25.06.2022	259	305	235
IN5	11.06.2020	22.06.2021	18.05.2022	224	270	197	01.07.2020	08.07.2021	06.06.2022	244	286	216	21.07.2020	25.07.2021	25.06.2022	264	303	235
UN / 2389m	21.05.2020	18.06.2021	26.05.2022	188	241	198	30.05.2020	22.06.2021	05.06.2022	197	245	209	10.06.2020	23.06.2021	31.05.2022	208	246	203
UN1	08.06.2020	17.06.2021	03.06.2022	206	240	206	24.06.2020	25.06.2021	25.06.2022	222	248	228	28.06.2020	03.07.2021	nd	226	256	nd
UN2	11.05.2020	16.06.2021	20.05.2022	178	239	192	14.05.2020	nd	nd	181	nd	nd	18.05.2020	18.06.2021	23.05.2022	185	241	195
UN3	21.05.2020	19.06.2021	01.06.2022	188	242	204	23.05.2020	20.06.2021	04.06.2022	190	243	207	11.06.2020	24.06.2021	06.06.2022	209	247	209
UN4	21.05.2020	18.06.2021	22.05.2022	188	241	194	13.06.2020	22.06.2021	31.05.2022	211	245	203	17.06.2020	14.06.2021	nd	215	237	nd
UN5	15.05.2020	19.06.2021	24.05.2022	182	242	196	22.05.2020	24.06.2021	29.05.2022	189	247	201	07.06.2020	28.06.2021	04.06.2022	205	251	207
UN6	21.05.2020	20.06.2021	nd	188	243	nd	22.05.2020	20.06.2021	01.06.2022	189	243	204	nd	22.06.2021	27.05.2022	nd	245	199
FU / 2450 m	15.06.2020	30.06.2021	25.05.2022	229	240	202	nd	nd	nd	nd	nd	nd	05.07.2020	24.07.2021	16.06.2022	247	264	226
FU1	01.06.2020	27.06.2021	21.05.2022	212	237	200	nd	nd	nd	nd	nd	nd	28.06.2020	16.07.2021	11.06.2022	239	256	221
FU2	23.06.2020	02.07.2021	02.06.2022	234	242	211	nd	nd	nd	nd	nd	nd	06.07.2020	26.07.2021	10.06.2022	247	266	219
FU3	23.06.2020	06.07.2021	25.05.2022	234	246	202	nd	nd	nd	nd	nd	nd	13.07.2020	31.07.2021	27.06.2022	254	271	235
FU4	13.06.2020	26.06.2021	23.05.2022	224	236	199	nd	nd	nd	nd	nd	nd	05.07.2020	nd	22.06.2022	246	nd	229
FU5	29.06.2020	28.06.2021	22.05.2022	240	238	197	nd	nd	nd	nd	nd	nd	05.07.2020	nd	10.06.2022	246	nd	216
OB / 2700 m	27.05.2020	15.06.2021	13.05.2022	187	197	192	nd	21.06.2021	25.05.2022	nd	204	203	24.06.2020	26.06.2021	05.06.2022	215	208	215
OB1	nd	19.06.2021	30.05.2022	nd	201	209	nd	23.06.2021	02.06.2022	nd	205	212	26.06.2020	25.06.2021	04.06.2022	217	207	214
OB2	nd	08.06.2021	26.04.2022	nd	190	174	nd	nd	10.05.2022	nd	nd	188	nd	27.06.2021	06.06.2022	nd	209	215
OB3	27.05.2020	18.06.2021	nd	187	200	nd	nd	20.06.2021	01.06.2022	nd	202	209	22.06.2020	26.06.2021	nd	213	208	nd

b. Pflanzliche Biomasse

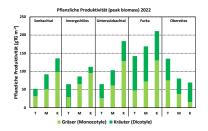


Abbildung 9: Pflanzliche Produktivität (peak biomass) 2020 (links) 2021 (Mitte) und 2022 (rechts). Mittelwert gepoolt über alle K, M und T Felder aller Transekte pro Standort. Aufgrund von schweren Unwettern und einer damit verbunden Wegsperre war eine zeitgerechte Ernte im Jahr 2021 im Untersulzbachtal nicht möglich.

Die Entwicklung der Biomasse gibt Auskunft über die Wachstumsbedingungen an den jeweiligen Standorten. Abbildung 9 zeigt die Menge der im aktuellen Jahr gebildeten oberirdischen Biomasse, ausgedrückt in g TG pro m² (TG = Trockengewicht), für die einzelnen Standorte gepoolt innerhalb der drei charakteristischen Bereiche entlang des Schneeschmelzgradienten (T'- 'M' - K') für 2020 (links) 2021 (Mitte) und 2022 (rechts).

Wie schon in Newesely et al 2019a beschrieben bestätigen auch dies aktuellen die Ergebnisse (mit Ausnahme von Oberettes) unsere Hypothese, dass entlang des Gradienten der "Habitatgunst" die oberirdische Biomasse von 'T' nach 'K' zunimmt. Auffällig sind die sehr hohen Biomassewerte im Jahr 2020 in allen Gebieten mit Ausnahme von Oberettes. Auch in der hier beschriebenen Periode zeigt sich der schon aus der Untersuchungsperiode 17-20 festgestellte Trend, dass die Menge an Biomasse in Oberettes entlang des Gradienten genau umgekehrt verhält als in den anderen Gebieten (Abbildung 10). Aufgrund schwerer Unwetter im oberen Pinzgau und einer damit zusammenhängenden Sperre des Wegs ins Untersulzbachtal im Sommer 2021 konnte die Ernte zum geplanten Zeitpunkt nicht durchgeführt werden. Ein späterer Versuch die Ernte am Ende des auf Grund der Vegetationsentwicklung gerade noch möglichen Zeitfensters nachzuholen, musste, aufgrund der im Gegensatz zum sonnigen Wetter am Talanfang sehr schlechten Witterung (Nebel, starker Regen) am Talschluss, letztendlich aus Sicherheitsgründen aufgegeben werden.

Auf allen Standorten verschob sich das Verhältnis Kräuter zu Gräsern entlang des Gradienten der 'Habitatgunst`. In 'T' dominierten die Kräuter, in 'K' die Gräser. Für die Veränderungen der jährlichen Biomasseproduktion sind demnach in der "T"-Zonen hauptsächlich die Kräuter, in der "K"-Zonen dagegen die Gräser verantwortlich.

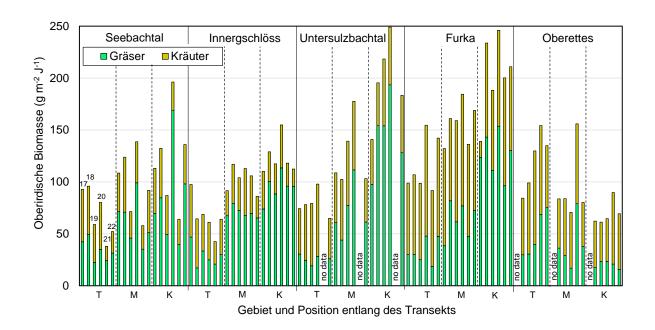


Abbildung 10: Biomassevergleich zwischen den Jahren 2017 und 2022. Bei Oberettes ist eine Abstufung von T nach K nicht erkennbar. Hier überwiegen die Einflüsse durch Jahrhunderte lange intensive Beweidung sowie der Einflüss von Windkanten im H-Bereich. Jahre, in denen keine Ernte erfolgen konnte sind mir "no data" genkennzeichnet (aus Körner et al. 2022).

c. Phenocam

Die Ausaperung der Untersuchungsflächen sowie die Entwicklung der Vegetation stellt eine wichtige Zusatzinformation für die Interpretation der gewonnenen Messdaten zur Bodentemperatur als auch zur Biomasse dar. Für die Fragestellung der Entwicklung der Vegetation war es notwendig aus den Bilddaten der Phenocam jene Bereiche auszuwählen und einer Auswertung zuzuführen, die auch den Zonen der Habitatsgunst entsprechen. In der Abbildung 11 sind die jeweiligen für die Auswertung relevanten Zonen aus dem Phenocam-Bild farblich gekennzeichnet

Abbildung 11: Phaenocam Bild mit Markierung der Zonen der Habitatsgunst. Links - K, Mitte M, rechts T.

Der Einsatz unter den im Innergschlöss vorherrschenden Bedingungen stößt an die Grenze des technisch Machbaren. Einerseits ist die Abdeckung durch das GSM-Netz häufig gestört oder derart schlecht, dass eine Übertragung der Daten nicht erfolgreich durchführbar ist. Andererseits führt speziell im Hochwinter die z.T. durch Vereisung bzw. Schneebedeckung des Solarpanels sowie die im Dezember und Jänner nur sehr kurze bis völlige fehlende Sonneneinstrahlung aufgrund der Beschattung durch die umliegenden Berge zu massiven Problemen mit der Energieversorgung. Zusätzlich gab es noch Probleme mit dem Datalogger sowie Schäden an den Sensoren zur Erfassung der Vegetationsentwicklung, die aufgrund fehlender Verfügbarkeit beim Hersteller nicht ersetzt werden konnten. Daher liegen nur die Auswertungen der Bilder der Kamera vor. Die Verläufe der "green chromatic coordinate", die ein Maß für die Vegetationsentwicklung darstellen sind in Abbildung 12 für die Zone K, in Abbildung 13 für Zone M und in Abbildung

14 für Zone T dargestellt. Aufgrund der technischen Probleme ist der phänologische Höhepunkt in der Zone K nicht eindeutig erkennbar. Für die Zonen M und T sind die Zeitpunkte jedoch gut ablesbar. Eine detailliertere Auswertung ist aufgrund der Ausfälle zu Beginn der Wachstumsperiode bzw. während der Ausaperung für das Jahr 2022 nicht möglich. Aktuelle Bilder und Daten können https://phenocam.nau.edu/webcam/sites/nphtin/ entnommen werden.

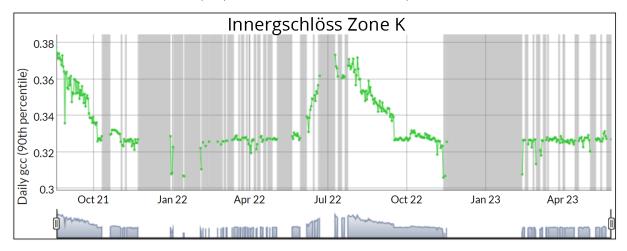


Abbildung 12: Originalabbildung aus der Auswertung der Phenocam Bilder durch das PhenoCam Netzwerk für die Zone K.

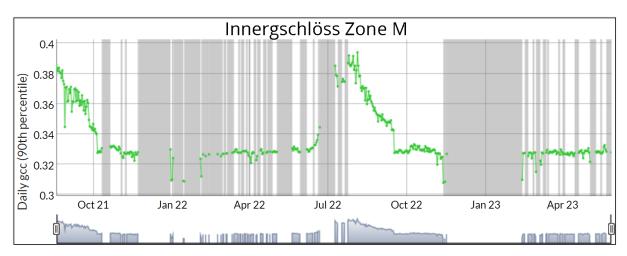


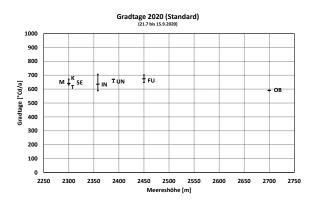
Abbildung 13: Originalabbildung aus der Auswertung der Phenocam Bilder durch das PhenoCam Netzwerk für die Zone M.



Abbildung 14: Originalabbildung aus der Auswertung der Phenocam Bilder durch das PhenoCam Netzwerk für die Zone T.

Interpretation und Diskussion

a. Standortcharakterisierung


"Um die natürlichen Veränderungen in Biozönosen bei konstanter Umwelt von Veränderungen, die durch eine sich ändernde Umwelt induziert werden, zu unterscheiden, ist es unumgänglich in einem Monitoring die abiotischen Umweltparameter, wie auch die Organismen und deren Interaktionen zu erfassen. Für unsere Fragestellung besteht die abiotische Umwelt im Wesentlichen aus den Rahmenbedingungen die Klima und Boden liefern, wobei der Boden selbst ein Produkt der Biozönose ist, und in starker Wechselwirkung mit den Organismen steht und mit ihm 'reift' (Sukzession) (vgl. Körner 2019)." Zitiert aus Newesely et al. 2019a.

Für eine klassische meteorologische Standortcharakterisierung werden standgemäß die mesoklimatischen Daten wie Lufttemperatur und Luftfeuchtigkeit zugrunde gelegt. Diese Angabe lassen eine Eingliederung in übergeordnete Messnetze zu. Die durch das Mikroklima geprägten Wachstumsbedingungen für die Pflanzen unterscheiden sich aber oftmals deutlich von den mesoklimatisch erfassbaren Werten, so dass es notwendig war, hier einen anderen Ansatz zu wählen. Für die hier gewählte Standortklassifizierung werden daher die für das Wachstum der Pflanzen relevanteren Bodentemperaturen herangezogen. Durch die gleichzeitige und standörtliche Erfassung der mesoklimatischen Daten ist aber eine Verknüpfung der Daten nach WMO Standard (World Meteorological Organization 2012) gegeben.

Das Jahr 2020 galt als eines der wärmsten seit Beginn der Wetteraufzeichnungen. Starke Unterschiede in der Schneemenge zwischen Nord und Südalpen im Jänner 2020 führten aber auch zu einem deutlichen Unterschied im Ausaperungszeitpunkt. So aperten die Flächen im Untersulzbachtal (Nordalpen) rund ein Monat früher aus als im Innergschlöss (Südalpen). Das Jahr 2021 war dagegen im langjährigen Vergleich zu kühl. Dies zeigt sich nicht nur an der späten Ausaperung, sondern auch an den deutlich niedrigeren Jahresmittelwerten der Lufttemperatur. Gegenüber dem Jahr 2020, in dem die Jahresmitteltemperatur in allen Gebieten über 0°C lag, lag das Jahresmittel der Lufttemperatur 2021 sowohl im Innergschlöss (-0,46°C) als auch in Oberettes (-1,0°C) deutlich unter dem Gefrierpunkt. Erste Daten aus 2022 lassen dagegen wieder ein sehr warmes bis heißes Jahr erwarten.

Die für das Pflanzenleben oberhalb der oberen Waldgrenze relevanten Temperatur- und Luftfeuchtigkeitsbedingungen unterschieden sich wesentlich vom Mesoklima, da sie stark von der Topographie und von der Wuchsform der Pflanzen beeinflusst sind. Daher sind für das Pflanzenwachstum niederwüchsiger Bestände die Bestandestemperaturen und nicht die Lufttemperaturen ausschlaggebend (Cernusca 1976a, 1976b; Tappeiner & Cernusca 1996). Aufgrund der Topographie aber auch der Wuchsformen der Pflanzen variiert das Bestandesklima im Gebirge häufig sehr kleinflächig und ist zudem insbesondere an Klartagen deutlich vom Makroklima atmosphärisch entkoppelt (Körner & Cochrane 1983, Scherrer & Körner 2011, Heinl et al. 2012). Dies ist speziell während der Vegetationsperiode von größter Bedeutung. Da eine direkte Messung des eigentlichen Bestandesklimas in dieser Studie nicht möglich ist, können näherungsweise auch die Bodentemperaturen in der Tiefe von 3-4 cm herangezogen werden. Wie in Newesely et al. 2019 ausführlich beschrieben unterscheiden sich die Bodentemperaturen oftmals deutlich von den Lufttemperaturen und liegen teilweise bis zu 5 K darüber.

Aufgrund der unterschiedlichen Schneeschmelze an den Standorten und den 'K'-, 'M' -und 'T-Bereichen der Transekte wurde ein standardisierter Vergleich der Bodentemperaturen zwischen den Standorten anhand von Gradtagen durchgeführt. Dafür wurde nur die schneefreie Zeit verwendet, und zwar der Zeitraum zwischen dem vollständigen Ausapern des allerletzten Transekts an allen Standorten und damit ein für alle Gebiete identisches Datum. Für das Jahr 2020 war dies die Zeitperiode vom 21. Juli bis zum 15. September 2020. Das Ergebnis zeigt, dass die so berechneten Wärmesummen für alle 6 Standorte auf etwa dem gleichen Niveau liegen (Abbildung 15 links). Unterschiede, die durch die Unterschiede in der Meereshöhe erklärbar wären, liegen nicht vor. Daraus lässt sich klar ableiten, dass die klimatischen Bedingungen, wie sie unmittelbar auf die untersuchten Organismen wirken, trotz eines Höhenunterschieds von 400 m zwischen den 5 Standorten bis auf das Seebachtal, welches tendenziell kühler ist, im Jahr 2020 durchaus vergleichbar waren. Die geringe Streuweite der Werte zeigt auch, dass der Unterschied innerhalb der Transekte zwischen "Optimal" ('K') und "Pessimal" ('T') sehr klein ist. Dass dies keine Besonderheit des Jahres 2020 ist, zeigt der Vergleich mit 2021 (Abbildung 15, rechts). Für das Jahr 2022 liegen erst die Daten bis Anfang August vor (Abbildung 16). Daraus ist zu erkennen, dass die Gradtage für 2022 schon bis Mitte August deutlich über jenen der vorangegangenen Jahre lagen. Dies bestätigt die Besonderheit dieses Jahres

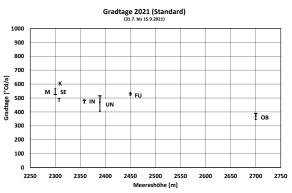


Abbildung 15: Standardisierte Gradtage 2020 und 2021in [Cd/a] aller Standorte für eine standardisierte Zeitperiode (links 21.07.2020 bis 15.9.2020, rechts 31.7.2021 bis 15.9.2021). Der Beginn der Zeitperiode ergibt sich dadurch, dass alle Transekte an allen Standorten schneefrei sind. K, M und T stehen für Gradienten der 'Habitatgunst' in den Transekten von optimal (K) über einen mittleren Bereich (M) bis pessimal (T)

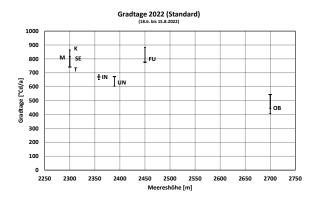


Abbildung 16: Standardisierte Gradtage 2022 in [Cd/a] aller Standorte für eine standardisierte Zeitperiode (18.06.2022 bis **15.8.2022**). Der Beginn der Zeitperiode ergibt sich dadurch, dass alle Transekte an allen Standorten schneefrei sind. K, M und T stehen für Gradienten der 'Habitatgunst' in den Transekten von optimal (K) über einen mittleren Bereich (M) bis pessimal (T)

b. Biomasse

Die Messdaten der pflanzlichen Produktion über nunmehr 6 Untersuchungsjahren zeigen bereits eine starke interannuelle Variabilität, wobei der Trend entlang des Gradienten der "Habitatgunst" deutlich zu erkennen ist. Die höchste pflanzlichen Produktion findet sich im optimalen Bereich ("K") und der geringsten im pessimalen Bereich (T"). Ausnahmen bildet hier nur Oberettes, welches einen genau gegenteiligen Trend (Zunahme der Biomasse von optimal zu pessimal) aufweist. Dieser Standort ist durch einen seit Jahrhunderten extremen Beweidungsdruck gekennzeichnet. Ohne Schutzkörbe wird der Rasen auf 2 cm abgegrast. Im Vergleich zu den anderen Standorten bietet Oberettes daher die Möglichkeit die Wechselwirkungen von Klimawandel und extremer Landnutzung langfristig zu untersuchen.

Eine zu frühe Ernte kann zu Fehlern führen. Um den genauen Erntezeitpunkte anhand der Phänologie besser abschätzen zu können, wurde im Innergschlöss eine entsprechende Webcam montieren, die ins internationale PhenoCam-Netzwerk integriert ist und damit zumindest wochenaktuell Daten über die Vegetationsentwicklung liefert.

Anhand der bisher vorhandenen Datenreihe kann eine unmittelbare Korrelation der Biomasseproduktion zur Witterung des aktuellen Jahres nicht schlüssig erklärt werden Tendenziell erkennt man aber speziell für das Untersulzbachtal und die Furka eine deutliche Zunahme der Biomasse in der Periode 2017-2022. Einen Zusammenhang mit klimatischen Veränderungen lassen diese Daten aber nicht fundiert zu.

Die vorliegenden nun sechsjährigen Ergebnisse zeigen sowohl die Bedeutung eines Langzeitmonitorings als auch die Notwendigkeit langfristig zu messen auf. Körner (2018) weist auf das Problem der zeitlichen Variabilität in Natursystemen hin. Die teilweise großen Unterschiede zwischen den einzelnen Jahren verdeutlichen anschaulich die Wichtigkeit jährlicher Untersuchungen. So zeigen die Beprobung 2017, 2020 und 2022 im Vergleich zu 2019 und 2021 völlig

konträren Ergebnisse. Körner (2018) zeigt dieses Problem deutlich auf (Abbildung 17). Die für das terrestrische Langzeitmonitoring im NPHT gewählten Modellökosysteme entlang eines Gradienten der Schneeschmelze und damit der Habitatgunst eignen sich daher besonders gut, da es sich dabei um reife Ökosysteme handelt, in denen sich stabile Biozönosen etablieren konnten. Jährliche Schwankungen in der Witterung können daher abgepuffert werden so dass sich diese nicht unmittelbar in den erfassten Messgrößen abbilden.

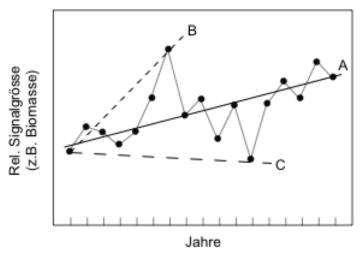


Abbildung 17: Problem der Jahres-Schwankungen von Signalen bei Langzeitbeobachtungen mit großen Beobachtungsintervallen. Schlussfolgerungen B und C weichen stark vom korrekten Trend A ab (aus Körner 2018)

Danksagung

Für die organisatorische Unterstützung und die wertvolle Mitwirkung im Gelände geht ein herzlicher Dank an die Mitarbeiter*innen des Nationalparks Hohe Tauern. Namentlich nennen möchten wir DI Elisabeth Hainzer, Mag. Katharina Aichhorn, Mag. Florian Jurgeit, Mag. Martin Kurzthaler und Stefan Lerch. Bedanken möchten wir uns auch bei der Österreichischen Forschungsgemeinschaft (FFG). Sie ermöglichte durch ihr Programm "Talente Praktika" die Einbindung von Thomas Millebner, Markus Michl, Nando Nianias, Paulina Ulseß, Jakob Kapferer, Taissia Wolfauer, und Mohamad Ali Taha in das vorliegende Projekt. Michael Steinwandter, PhD von Eurac Research Bozen-Bolzano: Vielen Dank für Eure tatkräftig Hilfe bei der Probennahme im NPHT.

Abbildungsverzeichnis

(2200 no ii) N. L. rock to Togographica and Lagrangittal Disc. Togographica
(2300 m üNN, rechts) rot: Tagesmaxima, schwarz: Tagesmittel, Blau: Tagesminima
Abbildung 2: Lufttemperatur im Untersuchungszeitraum, Untersulzbachtal (2380 m üNN, links), Furka
(2460 m üNN, rechts)
Abbildung 3: Lufttemperatur Im Untersuchungszeitraum Oberettes (2700 m üNN)
Abbildung 4 (links): Vergleich der Jahresmittel der Lufttemperatur zwischen allen Standorten vom 1.1.2020
bis 31.12.2020 (links), 1.1.2021 bis 31.12.2021 (rechts). Aufgrund des zeitweisen Ausfalls der
Messtation Seebachtal ist eine Mittelwertbildung für diese Station nicht möglich6
Abbildung 5 (links): Vergleich der Jahresmittel der Lufttemperatur zwischen allen Standorten vom 1.1.2022
bis zur Ernte am 18.8.2022. Aufgrund des zeitweisen Ausfalls der Messtation ist eine
Mittelwertbildung für das Seebachtal nicht möglich6
Abbildung 6: Mittlere Bodentemperatur während der Wachstumsperiode gegen den Höhengradienten der
Untersuchungsflächen für die Jahre 2017-2021.
Abbildung 7: Gradstunden (T≥5) in [°CH] aller Standorte (Seebachtal SE, Innergschlöss IN, Untersulzbach
UN, Furka FU, Oberettes OB). GH≥5 sind ein Maß für die Wärmesummen, die den Pflanzen für das
Wachstum zur Verfügung stehen. Für die Berechnung wurden nur Bodentemperaturen ≥ 5°C bis zur
Ernte 2020 (links), 2021 (Mitte) und 2022 (rechts) berücksichtigt und zudem für die 'K', 'T' und 'M' pro
Standort gepoolt. Die Balken geben die Variabilität für die einzelnen Gebiete entlang des Gradienten
vom lokalen Optimum der Vegetationsentwicklung K über einen mittleren Transektbereich M bis zum
lokalen Pessimum der Vegetationsentwicklung T an10
Abbildung 8: Anzahl der Tage mit mittlerer Bodentemperatur über 5°C gegen den Höhengradienten der
Untersuchungsflächen für die Jahre 2017-202112
Abbildung 9: Pflanzliche Produktivität (peak biomass) 2020 (links) 2021 (Mitte) und 2022 (rechts). Mittelwert
gepoolt über alle K, M und T Felder aller Transekte pro Standort. Aufgrund von schweren Unwettern
und einer damit verbunden Wegsperre war eine zeitgerechte Ernte im Jahr 2021 im Untersulzbachtal
nicht möglich13
Abbildung 10: Biomassevergleich zwischen den Jahren 2017 und 2022. Bei Oberettes ist eine Abstufung
von Tnach Knicht erkennbar. Hier überwiegen die Einflüsse durch Jahrhunderte lange intensive
Beweidung sowie der Einfluss von Windkanten im H-Bereich. Jahre, in denen keine Ernte erfolgen
konnte sind mir ,no data' genkennzeichnet (aus Körner et al. 2022)14
Abbildung 11: Phaenocam Bild mit Markierung der Zonen der Habitatsgunst. Links – K, Mitte M, rechts T.14
Abbildung 12: Originalabbildung aus der Auswertung der Phenocam Bilder durch das PhenoCam
Netzwerk für die Zone K15
Abbildung 13: Originalabbildung aus der Auswertung der Phenocam Bilder durch das PhenoCam
Netzwerk für die Zone M15
Abbildung 14: Originalabbildung aus der Auswertung der Phenocam Bilder durch das PhenoCam
Netzwerk für die Zone T
Abbildung 15: Standardisierte Gradtage 2020 und 2021in [Cd/a] aller Standorte für eine standardisierte
Zeitperiode (links 21.07.2020 bis 15.9.2020, rechts 31.7.2021 bis 15.9.2021). Der Beginn der
Zeitperiode ergibt sich dadurch, dass alle Transekte an allen Standorten schneefrei sind. K, M und T
stehen für Gradienten der 'Habitatgunst' in den Transekten von optimal (K) über einen mittleren
Bereich (M) bis pessimal (T)
Abbildung 16: Standardisierte Gradtage 2022 in [Cd/a] aller Standorte für eine standardisierte Zeitperiode
(18.06.2022 bis 15.8.2022). Der Beginn der Zeitperiode ergibt sich dadurch, dass alle Transekte an
allen Standorten schneefrei sind. K, M und T stehen für Gradienten der 'Habitatgunst' in den
Transekten von optimal (K) über einen mittleren Bereich (M) bis pessimal (T)
Abbildung 17: Problem der Jahres-Schwankungen von Signalen bei Langzeitbeobachtungen mit großen
Beobachtungsintervallen. Schlussfolgerungen B und C weichen stark vom korrekten Trend A ab (aus
Körner 2018)
Abbildung 18: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Innergschlöss
für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

Abbildung 19: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Innergschlöss
für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau23
Abbildung 20: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Innergschlöss
für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau24
Abbildung 21: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 4 im Innergschlöss
für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau24
Abbildung 22: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 5 im Innergschlöss
für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau25
Abbildung 23: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Seebachtal für
die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau25
Abbildung 24: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Seebachtal für
die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau26
Abbildung 25: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Seebachtal für
die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau26
Abbildung 26: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im
Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau27
Abbildung 27: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im
Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau27
Abbildung 28: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im
Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau28
Abbildung 29: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 4 im
Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau28
Abbildung 30: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 5 im
Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau29
Abbildung 31: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 6 im
Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau29
Abbildung 32: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Furka für die
Jahre 2020 bis 2023. H: rot, M: gelb, T: blau30
Abbildung 33: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Furka für die
Jahre 2020 bis 2023. H: rot, M: gelb, T: blau30
Abbildung 34: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Furka für die
Jahre 2020 bis 2023. H: rot, M: gelb, T: blau31
Abbildung 35: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 4 im Furka für die
Jahre 2020 bis 2023. H: rot, M: gelb, T: blau
Abbildung 36: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 5 im Furka für die
Jahre 2020 bis 2023. H: rot, M: gelb, T: blau
Abbildung 37: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Oberettes für
die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau
Abbildung 38: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Oberettes für
die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau
Abbildung 39: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Oberettes für
die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau33

Literaturverzeichnis

Literaturverzeichnis

- Cernusca A (1976a) Bestandesstruktur, Bioklima und Energiehaushalt alpiner Zwergstrauchbestände. Oecol Plant 11: 71-102
- Cernusca A (1976b) Standörtliche Variabilität in Mikroklima und Energiehaushalt alpiner Zwergstrauchbestände. Verh Ges Ökologie, Wien 1975, 9-21
- Heinl M, Leitinger G, Tappeiner U (2012) Diurnal Surface Temperature Regimes in Mountain Environments. Physical Geography 33/4: 344-359
- Körner C, Cochrane P (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south eastern Australia. Acta Oecol Oec Plant 4:117-124
- Körner C (2018) Comparative, long-term ecosystem monitoring across the Alps: Austrian Hohe Tauern National Park, South-Tyrol and the Swiss central Alps. 6th Symposium for Research in Protected Areas 2 to 3 November 2017, Salzburg, 331 337
- Körner, C, Tappeiner, U, Newesely, C, Wittmann, H, Eberl, T, Kaiser, R, Meyer, E, Grube, M, Fernandez Mendoza, F, Füreder, L, Niedrist, G H, Daim, A, Kellerer-Pirklbauer, A, Wickham, S, Petermann, J, Berninger, U, Hackänder, K, Niedrist, G, Seeber, J, Steinwandter, M (2020) Langzeitmonitoring von Ökosystemprozessen -Synthese der Startphase 2016-2018, Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8748-6, doi: 10.1553/ GCP_LZM_NPHT_Synthese
- Körner, C., U.-G. Berninger, A. Daim, T. Eberl, F. F. Mendoza, L. Füreder, M. Grube, E. Hainzer, R. Kaiser, E. Meyer, C. Newesely, G. Niedrist, G. H. Niedrist, J. S. Petermann, J. Seeber, U. Tappeiner and S. Wickham (2022). "Long-term monitoring of high-elevation terrestrial and aquatic ecosystems in the Alps a five-year synthesis." eco.mont (Journal on Protected Mountain Areas Research) 14(2): 48-69.
- Newesely C, Niedrist G, Tappeiner U, Körner C (2019a) Interdisziplinäres, integratives Monitoring- und Forschungsprogramm zur langfristigen, systematischen Ökosystembeobachtung im Nationalpark Hohe Tauern 2016-2019. Modul 01: Standortklima, Bodenphysik, Bodenchemie und pflanzliche Produktivität. Endbericht 2019. Unveröffentlichter Bericht im Auftrag des Nationalparks Hohe Tauern. http://www.parcs.at/npht/mmd_fullentry.php?docu_id=37874
- Newesely C, Tappeiner U, Körner C (2019b) Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern. Modul 01: Standortklima, Bodenphysik, Bodenchemie und pflanzliche Produktivität. Methoden-Handbuch. Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8749-3, doi: 10.1553/GCP_LZM_NPHT_Modul01
- Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38:406-416
- Tappeiner U, Cernusca A (1996) Microclimate and fluxes of water vapour, sensible heat and carbon dioxide in structurally differing subalpine plant communities in the Central Caucasus. Plant, Cell and Environment 19(4):403-417
- World Meteorological Organization (2012) Guide to Meteorological Instruments and Methods of Observation, WMO-No. 8, 2008 edition Updated in 2010 [WWW document] URL https://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf [accessed 17. 3. 2019]

Anhang

a. Standardgradtage

Tabelle 7: Standardisierte Gradtage 2020 und 2021in [Cd/a] aller Standorte für eine standardisierte Zeitperiode (links 21.07.2020 bis 15.9.2020, rechts 31.7.2021 bis 15.9.2021). Der Beginn der Zeitperiode ergibt sich dadurch, dass alle Transekte an allen Standorten schneefrei sind. K, M und T stehen für Gradienten der 'Habitatgunst' in den Transekten von optimal (K) über einen mittleren Bereich (M) bis pessimal (T). (IN = Innergschlöss, SE = Seebachtal, UN = Untersulzbachtal, FU = Furka, OB = Oberettes)

2020	Standard Gradtage (Alle Transekte komplett schneefrei)							
	K	M	Т	Mittelwert				
IN / 2358m	707.5	635.4	587.5	647				
IN1	705.4	322.4	292.9					
IN2	661.3	677.1	626.8					
IN3	728.3	676.9	nd					
IN4	727.0	743.0	768.1					
IN5	715.3	757.8	662.3					
SE / 2300m	671.8	640.5	629.9	648				
SE1	749.0	nd	669.6					
SE2	590.7	675.1	586.3					
SE3	675.6	605.9	634.0					
UN / 2389m	669.1	670.7	649.4	663				
UN1	734.9	704.7	668.3					
UN2	710.4	nd	679.4					
UN3	650.3	698.9	693.2					
UN4	632.1	674.1	629.9					
UN5	619.2	619.4	576.4					
UN6	668.0	656.2	nd					
FU / 2450 m	708.2	nd	647.0	678				
FU1	730.7	nd	662.1					
FU2	680.1	nd	722.9					
FU3	667.2	nd	668.9					
FU4	744.0	nd	nd					
FU5	691.0	nd	534.3					
OB / 2700 m	587.9	102.5	592.7	469				
OB1	nd	nd	589.3					
OB2	nd	nd	nd					
OB3	587.9	102.5	596.1					

2021	Standard Gradtage (Alle Transekte komplett schneefrei)							
	K	М	Т	Mittelwert				
IN / 2358m	487.8	483.8	463.8	480				
IN1	487.0	497.1	438.0					
IN2	447.2	449.5	418.5					
IN3	520.4	460.3	nd					
IN4	513.1	nd	534.9					
IN5	471.5	528.1	nd					
SE / 2300m	566.9	526.0	523.4	539				
SE1	418.5	378.7	372.8					
SE2	413.4	439.2	385.5					
SE3	868.7	760.0	811.9					
UN / 2389m	470.1	515.9	420.6	469				
UN1	531.7	508.9	nd					
UN2	500.6	nd	475.4					
UN3	448.4	698.9	693.2					
UN4	443.1	479.9	65.7					
UN5	423.6	419.1	383.0					
UN6	473.2	472.8	485.6					
FU / 2450 m	541.4	nd	519.4	533				
FU1	558.5	nd	516.7					
FU2	538.2	nd	551.2					
FU3	500.9	nd	490.4					
FU4	578.1	nd	nd					
FU5	527.9	nd	nd					
OB / 2700 m	369.0	388.7	344.6	367				
OB1	368.2	374.6	316.1					
OB2	369.8	nd	373.2					
OB3	nd	402.8	nd					

b. Bodentemperaturverläufe

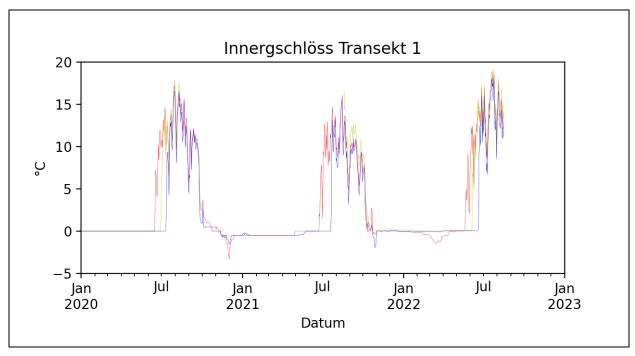


Abbildung 18: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Innergschlöss für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

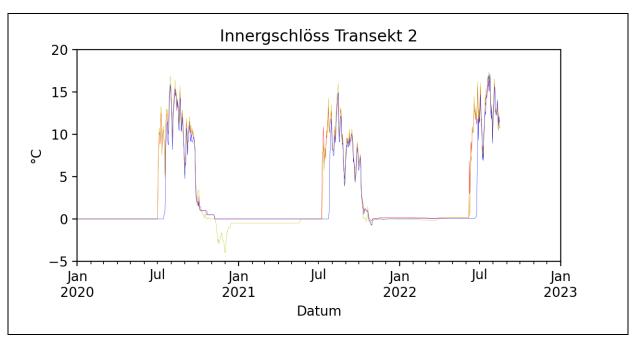


Abbildung 19: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Innergschlöss für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

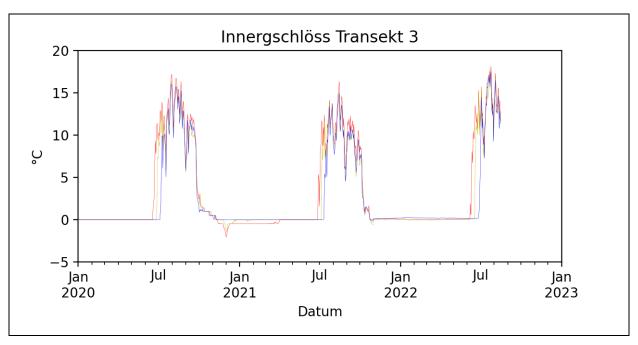


Abbildung 20: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Innergschlöss für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

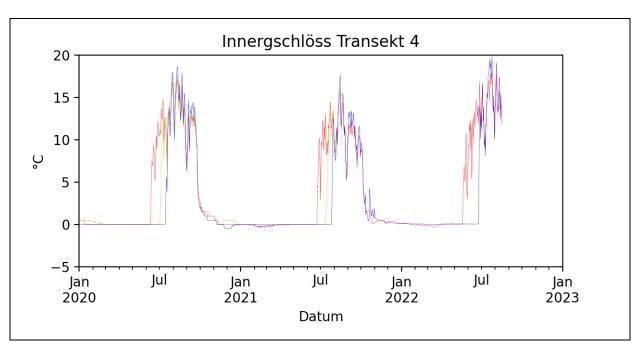


Abbildung 21: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 4 im Innergschlöss für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

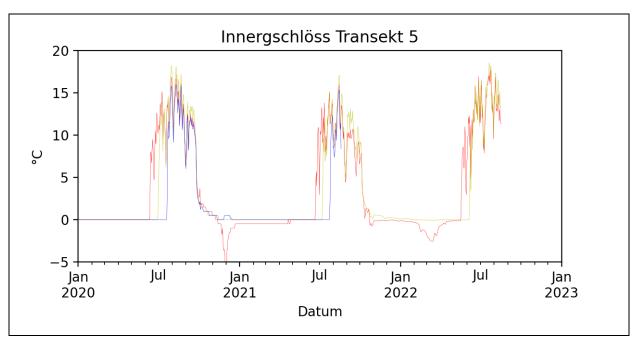


Abbildung 22: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 5 im Innergschlöss für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

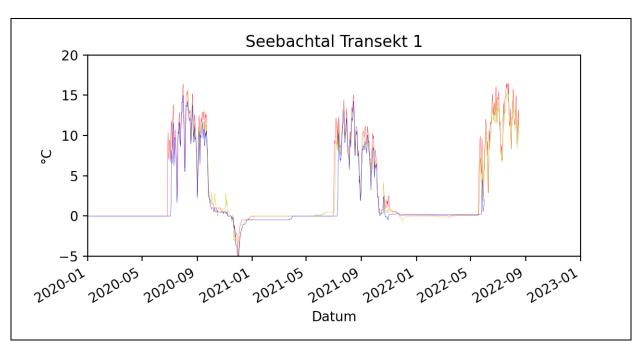


Abbildung 23: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Seebachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

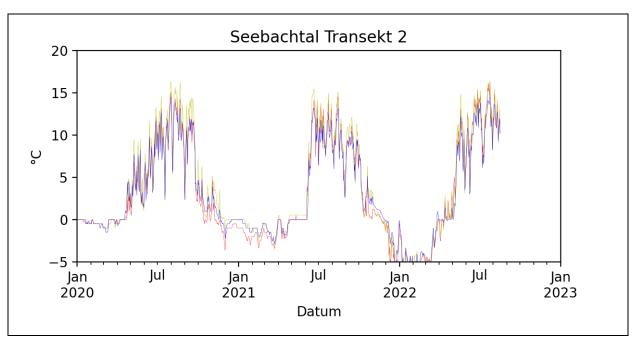


Abbildung 24: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Seebachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

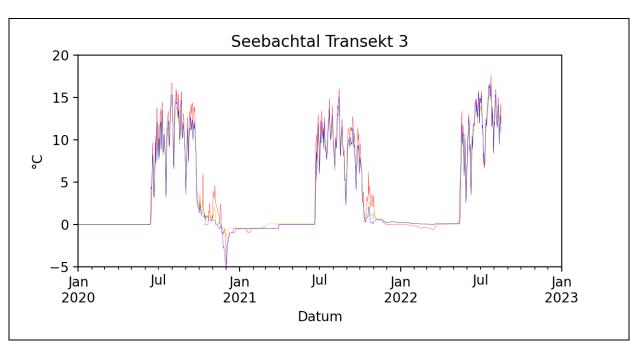


Abbildung 25: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Seebachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

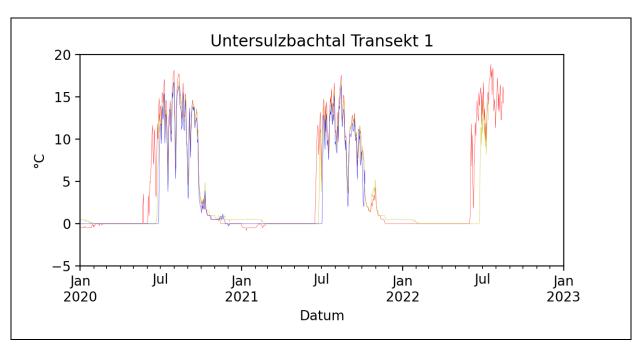


Abbildung 26: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

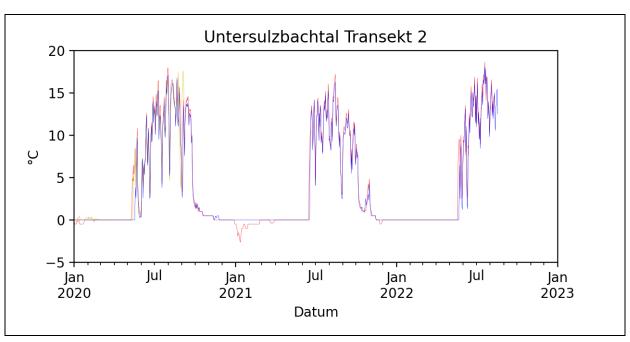


Abbildung 27: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

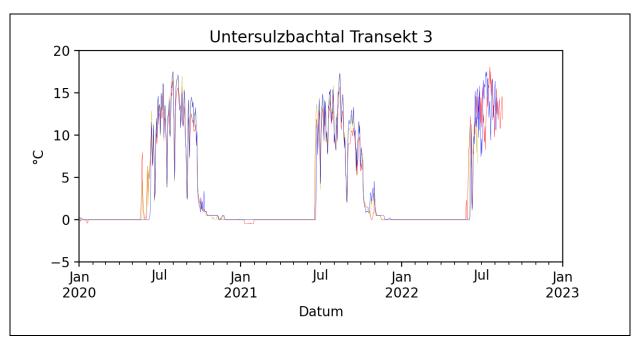


Abbildung 28: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

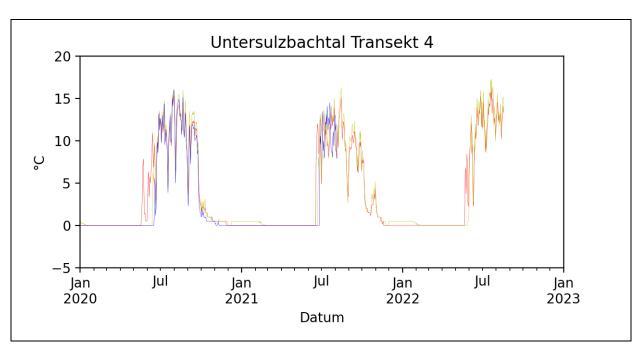


Abbildung 29: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 4 im Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

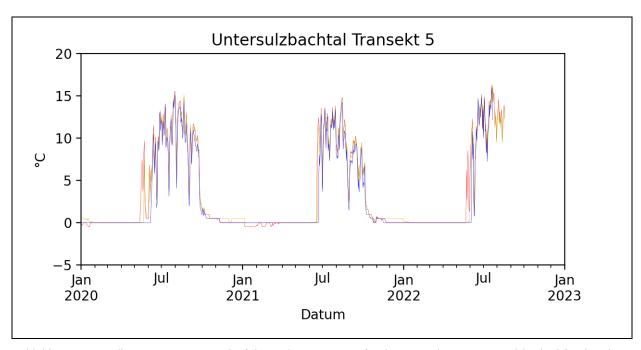


Abbildung 30: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 5 im Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

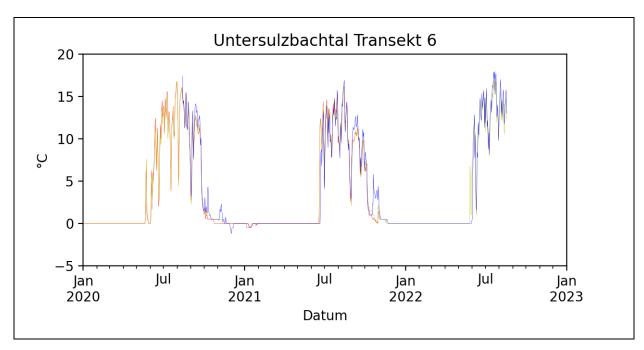


Abbildung 31: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 6 im Untersulzbachtal für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

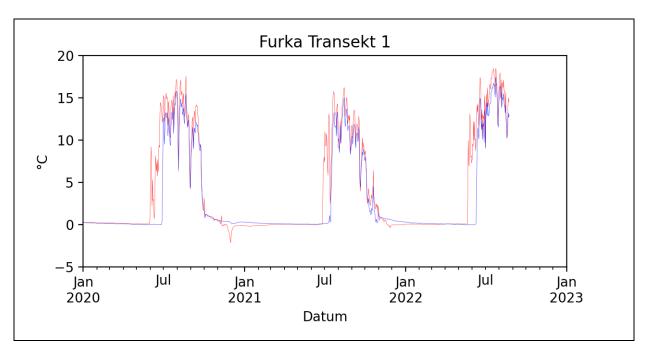


Abbildung 32: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Furka für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

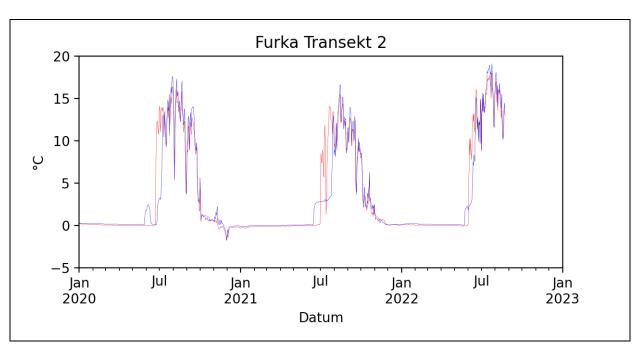


Abbildung 33: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Furka für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

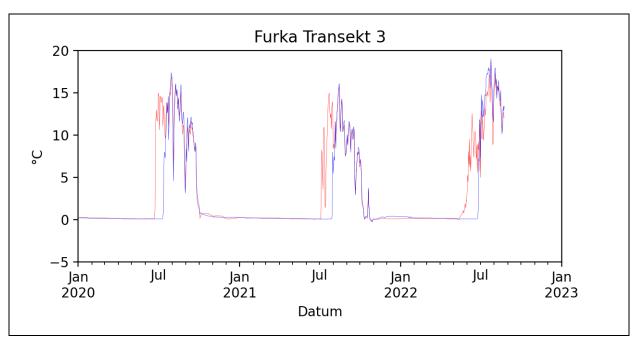


Abbildung 34: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Furka für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

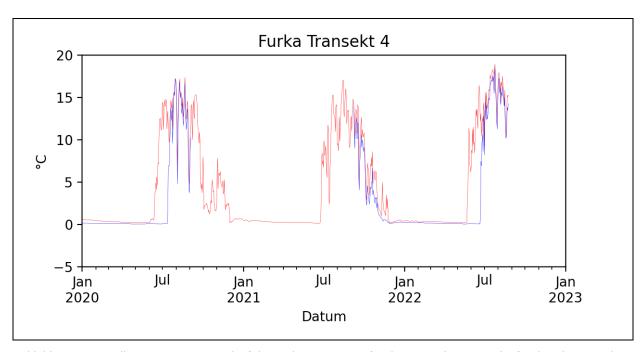


Abbildung 35: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 4 im Furka für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau



Abbildung 36: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 5 im Furka für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau



Abbildung 37: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 1 im Oberettes für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

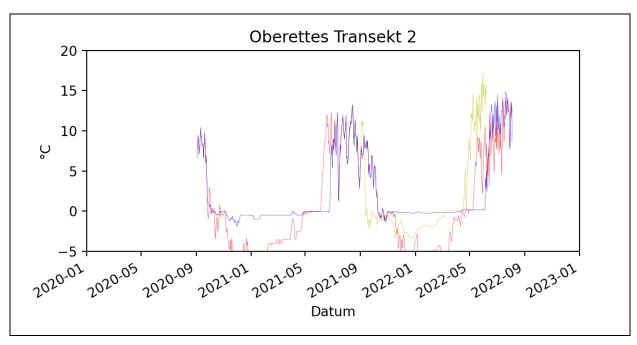


Abbildung 38: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 2 im Oberettes für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

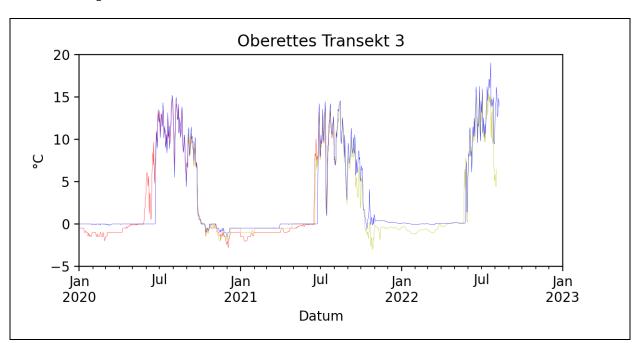


Abbildung 39: Detaillierter Temperaturverlauf der Bodentemperatur für den Transekt 3 im Oberettes für die Jahre 2020 bis 2023. H: rot, M: gelb, T: blau

Medieninhaber und Herausgeber, Verleger:

Nationalparkrat Hohe Tauern Kirchplatz 2, 9971 Matrei

Tel.: +43 (0) 4875 / 5112 | E-Mail: nationalparkrat@hohetauern.at