

Track Them Down

Telemetrie von Holzbienen im Nationalpark Neusiedlersee-Seewinkel

Sophie Kratschmer¹, Markus Milchram¹, Lukas Landler¹, Stephan Burgstaller¹, Magdalena Spießberger¹, Norbert Schuller¹, Daniel Gröticke¹, Henrike Wacker¹, Valentin Dönz¹, Anna Planitzer¹, Florian Ihle¹, Julia Lanner¹

¹ BOKU University, Vienna, Institute of Zoology Gregor-Mendel-Straße 33, 1180 Wien

INTRODUCTION

- Knowledge on specific habitat requirements and spatial ecology improve pollinator conservation efforts
- But collecting spatial data remains challenging
- Technological advances enable active tracking of large bees

Traditional telemetry with handheld receiver

Xylocopa valga ♂ with VHF transmitter

Photos: H. Wacker & S.Kratschmer

RESEARCH OBJECTIVES 1

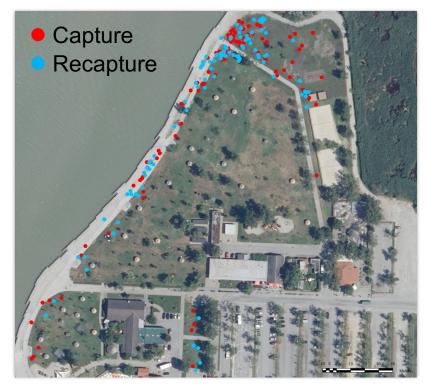
2022 – first study year:

- Initially: Bombus muscorum and Megachile sculpturalis as target species
- Investigating ecological niches and estimating occurrence
- → Problem: Transmitter size and weight too big!

B. muscorum

M. sculpturalis

RESULTS BOMBUS MUSCORUM


2022: No captures at known locations in and around Illmitz (naturbeobachtung.at)

Bombus muscorum

2022: High density at lido Illmitz

Capture-mark-recapture:

- 166 Indifiduals marked
 (5 ♂, 20 ♀ & 141 workers)
- 116 recaptures at lido
- Estimated worker population was 232 individuals (CI: 187-288)

B. muscorum Illmitz Strandbad 08/2022

RESEARCH OBJECTIVES 2

In 2023 we focused on the three Carpenter bee species (*X. iris, X. valga, X. violacea*) and investigated:

- Effect of transmitters on flight duration and number of flights
- Estimate population size around Illmitz in the national park Neusiedlersee-Seewinkel
- In depth knowledge on species specific foraging plants
- Apply and test new tracking approach using stationary receivers

Xylocopa iris ♀

Xylocopa violacea ♂

Xylocopa valga ♀ Photos: A. Planitzer

▶•)))

STUDY AREA

+ Haus am See

+ Biologiche Station

+ Krchentellinsfurth

+ Kirchese

+ Sedsoppel

+ Sedsoppel

Telemetry study area and receiver distribution

- "Neusiedler See Seewinkel" National Park
- Biological Station in Illmitz (~117mASL)
- Pannonian climate: Warm, dry and windy
- Soda pools, sand steppes, dry and wet grasslands, pasture, reed belt

View from station "Sandeck" towards the wetland and the lake Neusiedl

View from station "Kirchentellinsfurth" towards Zicklacke (soda pool)

METHODS: TRANSMITTER EFFECT

Transmitter effect:

- Flight cage experiment
- Repeated measures design: 2 specimens for 60 min. Tested with transmitter on and off (each 30 min.)
- Video analysis: Number of flights and flight duration in seconds

Flight cage (2x2x2m) setup

Wide angle camera

Photos: H. Wacker

>•))) METHODS: POPULATION, FORAGING PLANTS, TRAITS (((•◀

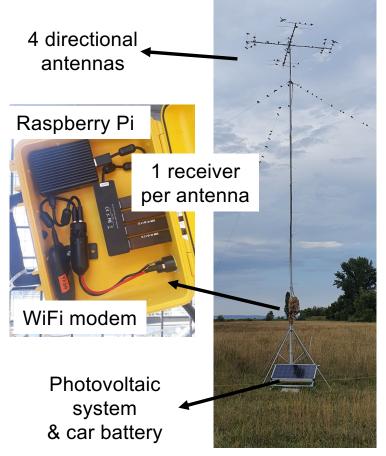
Population size, foraging plants:

- Capture-Mark-Recapture (C-M-R)
- Detailed documentation of visited plants

Marked with honeybee queen plates

Individual traits:

 Body size (Inter Tegulae Distance (ITD)) and body mass (g)



Identification and individual trait assessment

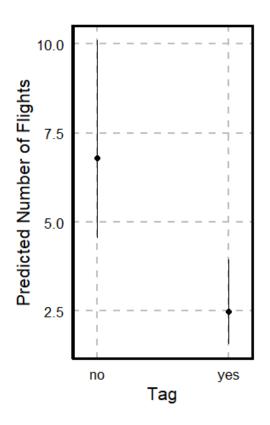
METHOD: TRACKING

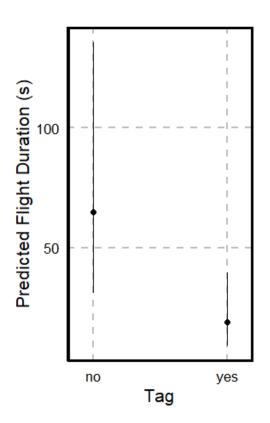
Receiver station

- Equip specimens with very high frequency (VHF) transmitters
- Remote tracking with stationary receivers
- Hand receivers: Homing-in, transmitter recovery

0.18 g transmitters are rechargeable

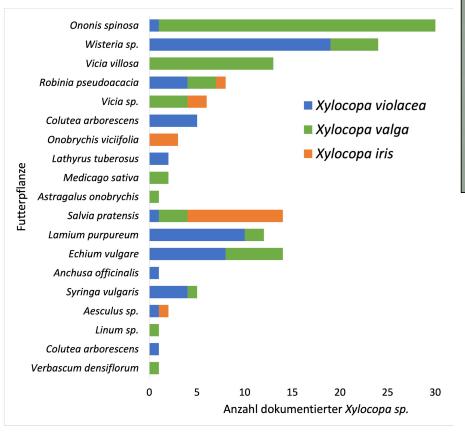
Tag application in a queen marking cage

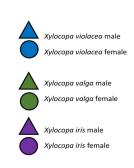

Photos: H. Wacker & S.Kratschmer



RESULTS: TRANSMITTER EFFECT

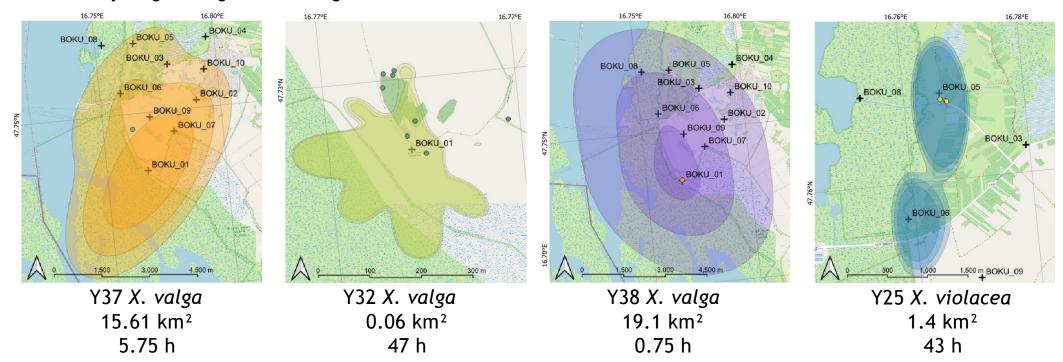
- 7 finished experiments including 14 specimens (12 ♂ and 2 ♀)
- Transmitter significantly negatively affected number and duration of flights (Poisson GLMM)


Results by V. Dönz


PRELIMINARY RESULTS: C-M-R, FORAGING ...

187 individuals marked, 47 recaptures

RESULTS: TRACKING


	Automated receiver stations	Manual tracking
Individuals tracked	X. valga: 4 ∰, 1 ♂ X. violacea: 2 ∰	X. valga: 3 ♀ X. violacea: 4 ♀
Tracking duration	0.75 - 47 hours (median: 5.9 hours)	0.5 - 65 hours (median: 21.5 hours)
Locations per bee	26 - 1561 (total: 3605)	1 - 7 (total: 20)
Accuracy	60 m ² (min: -249 m ² , max: 419 m ²)	0 - 25 m²
Individuals without any location		2

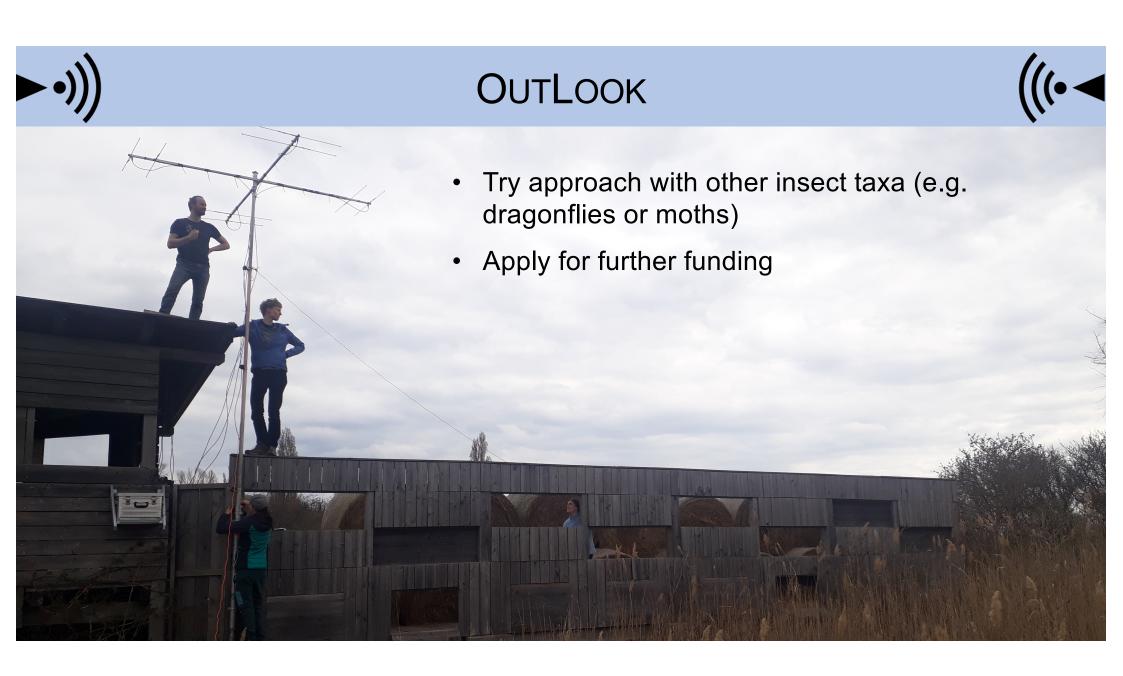
RESULTS: TRACKING

- Feasible triangulation only possible for four individuals
 - Y 37: *X. valga* ♀ on 22.06.23
 - Frequently close to woody habitats (Robinia pseudoacacia)
 - Activity range during 6h of tracking 15 km

Triangulation for *Xylocopa sp.* based on mcmc simulation

CHALLENGES

- Transmitter signals too weak <> Receiver distance too far
- Transmitters get detached and alter movement capabilities
- Specimen were quickly out of receiver range, leave study area
- High workload for trouble-shooting (Hardware!)
- Transmitter recovery time consuming with low success rate



Photos: H. Wacker & S.Kratschmer

ACKNOWLEDGEMENTS

Project funding by the DIBB research stimulation 2021. Special thanks to the Institute of Mathematics for additional funding!

Harald Grabenhofer, Arno Cimadom, Thomas Fleischhacker, Thomas Zechmeister, Bernhard Rauchwartner and Klaus Kettner for their help in the research area, during fieldwork and with handling of formalities.

We also thank Ralf Hurst (Plecotus-Solutions GmbH) for his help with technical challenges and our collagues (Christina Rupprecht) and students (Samira, Monica, Andreas, Anna)

THANKS FOR STAYING TUNED!

